

 University of Sussex, UK

Real-time hand
gesture recognition
for small devices
Thesis,
MSc in Evolutionary and Adaptive Systems

Rudra PK Poudel
rudrapoudel@gmail.com

September, 2009

~ ii ~

Acknowledgement

First to many people who helped me and contributed to shape this

thesis, I owe them all a debt of gratitude. Those listed below deserve

special mention and thanks.

My sincere thanks to Dr. David Young, my supervisor, who supervised

my work from the very beginning – from collection of vague ideas to the

completion of the project as it stands now; for his guidance, advice, and

criticisms during this work and moreover, his encouragement when I

feel low.

My thanks go to my colleagues at University Lab, who always use to

with me whether I need to go for walk at midnight or food when I am

hungry. Moreover, never bored to see my unsuccessful experiments and

encourage me each day for more hard work.

My special thanks to my lovely mom, Mandhari Poudel, who has

patience to stay alone without seeing me and supporting me from every

angle to complete this dissertation as well as this degree. Last but

definitely not least, I would like to thank all individuals who directly or

indirectly helped me in this work.

~ iii ~

Abstract: This dissertation proposes a vision based hand gestures

recognition system for low resource devices using a temporal template

based approach. The five most popular machine learning algorithms-

Naïve Bayes (NB), Radial Basis Function (RBF), Multi-Layer Perceptron

(MLP), SVM and sparse Bayesian classifier or Relevance Vector Machine

(RVM) are used to test the viability of the methods for low resource

devices. It is found that RBF and NB outperform the other methods.

Correct classification rates of 85% and 81.22% are obtained from RBF

and NB in a loosely controlled noisy environment. These results are not

only comparable to the best methods available but are also suitable for

implementation in real-time environments and on low resource devices.

~ iv ~

Contents

1. Introduction ... 1

1.1 Research Question .. 3

2. Literature Review ... 5

2.1. Model Based Approach ... 6

2.2. View Based Approach ... 7

2.3. Gesture classification ... 8

2.3.1. Rule Based Method .. 9

2.3.2. Learning Based Method .. 9

2.4. Summary of the Literature Review .. 10

3. Research Methodology .. 12

3.1. Feature Extraction ... 12

3.1.1 timed Motion History Image .. 12

3.1.2. Motion Gradient Orientation .. 13

3.1.3 Dimension Reduction .. 14

3.2. Gesture Classification .. 15

3.2.1. Naïve Bayes ... 15

3.2.2. Sparse Bayesian Classifier ... 17

3.2.3. Multi-Layer Perceptron ... 18

3.2.4. Radial Basis Function .. 19

3.2.5. Support Vector Machine ... 20

4. Experiments and Results ... 21

4.1 Description of Data ... 21

4.2 Assumption of Low Resource Device .. 23

4.3 Parameters Tuning .. 23

4.3.1. Naïve Bayes ... 24

~ v ~

4.3.2 Sparse Bayesian Classifier .. 26

4.3.3 Multi-Layer Perceptron .. 27

4.3.4 Radial Basis Function ... 28

4.3.5 Support Vector Machine .. 28

4.4 Results .. 29

4.4.1 Single Signer Hand Gestures Recognition 29

4.4.2 Four Signers Hand Gestures Recognition 30

4.4.3 Effect of Training Size ... 31

4.4.4 Training and Testing Duration .. 33

5. Discussion and Conclusion .. 35

5.1. Discussion ... 35

5.2. Applications of the System ... 40

5.3. Limitations of the Study ... 41

5.4. Future Work .. 42

5.5. Conclusion ... 42

Bibliography ... 44

Appendix A: Code ... 51

A.1 SetUserOptions.m ... 52

A.2 DataCapture.m ... 56

A.3 GestureRecognition.m ... 60

A.4 ExperimentGestureRecognition.m ... 63

A.5 ParamOptimizedGestureRecognition.m 66

A.6 ExperimentWithNaiveBayes.m .. 68

A.7 ExperimentWithMLP.m ... 71

A.8 ExperimentWithRBF.m ... 77

A.9 ExperimentWithRVM .. 81

A.10 ExperimentWithSVM.m ... 86

~ vi ~

A.11 GetData.m .. 87

A.12 LoadData.m .. 89

A.13 GetFeatures.m .. 90

A.14 PCA.m... 91

A.15 PCA_TestSeparate.m ... 92

A.16 GetMGOImages.m ... 93

A.17 GetPrePCA_V_Matrix.m ... 94

A.18 GetMGOImagesMatrix.m ... 95

A.19 GraphPlot.m ... 96

A.20 TestMGO.m ... 99

A.21 GetTrainingData.m ... 101

A.22 GetMotionHistory.m .. 103

A.23 UpdateMotionHistory.m .. 107

A.24 GetMotionGradientOrientations.m .. 108

~ vii ~

Acronym

HCI Human Computer Interaction

HMI Human Machine Interface

HMM Hidden Markov Model

K Size of features vector or used most variant principal

components or number of features

MEI Motion Energy Image

MGO Motion Gradient Orientation

MHI Motion History Image

ML Machine Learning

MLP Multi-Layer Perceptron

MSE Mean Square Error

RBF Radial Basis Function

RVM Relevance Vector Machine or sparse Bayesian classifier

SIFT Scale-Invariant Features Transform

SVM Support Vector Machine

tMHI timed Motion History Image

Real-time hand gesture recognition for small devices Page 1

1. Introduction

Hands are an intuitive way to communicate in human-to-human

interactions. Hand communications are even more important for the

hearing impaired. Hence, hand gestures would be a more natural and

effective way to communicate with robots, computers, mobiles and other

machines than using devices like keyboards, mice, touch panels and

joysticks. Though Artificial Intelligent (AI), especially machine vision and

machine learning, has progressed a lot in the last two decades the way

humans communicate with machines has remained largely unchanged.

Moreover, the decreasing prices and increasing power of electronic devices

like computers and cameras are another attractive reason for more

attention to be paid to vision based human machine interaction.

In the last few years, hand gestures recognition has received much

attention. Many review papers of hand gesture recognition have been

published, for example Pavlovic, Sharma and Huang (1997), Wu and

Huang (1999), Hassanpour, Wong and Shahbahrami (2008), Garg,

Aggarwal and Sofat (2009) and others are evidence of increasing research

interest in hand gesture recognition. Starner, Weaver and Pentland (1998)

are able to correctly recognize 98% of American Sign Language in a

restricted environment, which was a promising result at that time.

However, even one decade after the early success of Starner, Weaver and

 1 Introduction

Real-time hand gesture recognition for small devices Page 2

Pentland (1998), none of the existing methods has achieved 100% correct

classification, except with a much lesser number of simple gestures in a

restricted environment. Achieving a good success rate with a small

training set and complex gestures in a non-restricted environment is still

out of the reach of existing systems. Moreover, gesture recognition in real-

time is still a big challenge due to processing complexity.

Self-occlusion of fingers, color variation due to environmental changes,

personal variation of hand shape and movement and variation of hand

motion due to fatigue are all very difficult problems for hand gesture

recognition. Moreover, the hand has more than 25 degrees of freedom

(Francke, Ruiz-del-Solar and Verschae, 2007), which cause the lots of

variation on hand gestures movement. Hence, this dissertation will explore

whether an easy task for a human is really a difficult task for an intelligent

system or whether we could solve the problem using a simple adaptive

method. Moreover, the aim of this research work is to understand the

problems of hand gesture recognition in more detail. Alternative

approaches to solving the problem will be experimented with along with

discussions of the possible ways forward for this complex problem of

machine vision as well as machine learning. This dissertation will

experiment with 9 hand gestures ranging from simple to complex.

In the past, researchers had used different kinds of additional hand

devices to recognize the hand gesture, such as mechanical gloves (Fels and

Hinton 1997) and marker in figure tips (Kim, Albuquerque and Havemann

2004). However, additional devices increase the cost of the system and

creates uneasiness while making the hand gesture as well as being an

unnatural way of communication. Alternatively, vision based methods are

less difficult to implement and easy to use. Hence, this dissertation will

focus on vision based hand gesture recognition approach. Also, it is worth

to mention here that gestures are also related with other parts of the body

other than the hand, like body gestures which is especially use to human

behavior analysis as well as interaction with virtual world.

Real-time hand gesture recognition for small devices Page 3

Most of the hand gesture recognition models use Hidden Markov Model

(HMM) as HMM achieves remarkable success in similar kinds of speech

and handwriting recognition problems. HMM and their various extensions

have been tried by many researchers like Parallel HMM (PHMM) (Vogler

and Metaxas 2001), self-organizing HMM (Baure and Kraiss 2002),

adaptive extensions of HMM (Wilson and Bobick 2000) and pseudo two

dimension HHM (P2-HMM). However, HMM has been criticized recently

because HMM requires a large number of training sets and HMM analyses

each sign as a whole i.e. without breaking it into small meaningful parts

(Wong and Cipolla, 2005). Therefore, this dissertation explores hand

gesture recognition using the following methods: naïve Bayesian (NB)

classifier, sparse Bayesian classifier also known as Relevance Vector

Machine (RVM), Radial Basis Function (RBF), Multi-Layer Perceptron

(MLP) and Support Vector Machine (SVM).

This dissertation will outline similar work as well as different approaches

to hand gesture recognition in section 2. Research methodologies are

described in section 3. In section 4, experimental results are described and

in section 5, discussion of the results, limitations of the study, future work

along with conclusion are described.

1.1 Research Question

Human-robot, human-computer and human-other machines interaction

can all benefit from using hand signs as a more intuitive communication

mechanism. However, most of the researches on the past have focused on

increasing the success rate of hand gesture recognition and only a few of

them considered the problems of real-time processing capacity, small

training sets and minimum training time. More importantly, in the past

there has been no focus given for small devices with low processing

capacity, low memory and low resolution cameras. Hence, I strongly

believe that we would be highly benefitted by a hand gesture recognition

method available for low capacity devices. A method able to work on low

Real-time hand gesture recognition for small devices Page 4

resource devices would of course be automatically able to work on high

capacity devices.

Hence, this dissertation will explore the real-time hand gesture recognition

methodologies for the small devices. It will focus on different

methodologies and their efficiency rather than simply improving one

methodology of choice. It is important to first discover which methodology

is the most suitable for low resource devices. Also, it is worth mentioning

here that there has been no previous work which compares the different

methodologies in the same experimental setting.

Real-time hand gesture recognition for small devices Page 5

2. Literature Review

There are many forms of human gestures, such as hand gesture, general

body gesture and facial expression (Derpanis 2004). Sometimes only one

hand is used for gestures and sometimes both hands are used. Also,

sometimes hand gestures are used to express additional information along

with verbal communication, while hand gestures are the only means of

communication for deaf people. Therefore, some of the hand gestures are

simple while others are complex. However, this dissertation will be focus

on human machine interaction using single hand gesture.

Hand gestures are purposeful movement of the hand (Hassanpour, Wong

and Shahbahrami 2008), which carries the meaning. According to

psychological study, hand gesture consists three phases: preparation,

nucleus, and retraction. Preparation phase occurs before the nucleus

phase, it might be short as well as long. Major hand movement phase

where the actual gesture occurs is called nucleus phase. Retraction is the

end phase of the gesture i.e. termination of the gesture, which might not

occur if another gesture follows on continuously.

According to bionics view, the understanding of the gestures depends

upon effective tracking of the object of interest (i.e. the hand here in this

 2
Literature
Review

Real-time hand gesture recognition for small devices Page 6

case) and not merely on visual information of the whole environment

(Wang, Zhang and Dai 2007). Hence, it is very important that we must

effectively handle the environmental noise i.e. unnecessarily movement

except the hand in this case.

In general, vision based approaches fall into two different categories. One

is the model based approach and another is the view based approach,

which are separately summarized below.

2.1. Model Based Approach

The model based approaches tries to infer the knowledge of the hand

posture using a 3D model of the hand skeleton. One of the earliest model

based approach was proposed by Rehg and Kanade (1994), this uses the

bare hand for gesture recognition. 3D models actually try to capture the

information of the joints angles of the fingers and palm using multiple

cameras to model the hand gesture. This kind of model is idealistic to

communicate with virtual environment (Derpanis 2004).

The model based approaches tries to estimate the hand parameters (joint

angle of fingers and palm) for hand tracking using 2D image frames

captured using multiple cameras. Normally, 2 to 4 cameras are used

depending upon complexity of the environment and gestures. The hand

parameters estimation from the 2D images is an inverse mapping problem,

which is non-linear due to the 3D mapping of 2D projected image frames.

Though there are several methods that exist for optimum parameter

estimation in such situation such as Newton’s method but there is very

high chance to get stuck in local optimum solution rather than the global

optimum solution. Hence, estimation of best parameters is a difficult

problem in itself. To overcome the above mentioned problem, Wu, Lin and

Huang (2001) had applied Bayesian approaches but due to the high

dimensionality problem with increasing number of parameters, this is

Real-time hand gesture recognition for small devices Page 7

computationally more expensive. This excludes it from use in a real-time

implementation.

Model based approaches are robust in gesture recognition, that is the

reason why this approach is one of the most active approach for hand

gesture recognition research (Stenger, Mendonca and Cipolla 2001; Wu,

Lin and Huang 2001; Kim, Albuquerque, Havemann et al. 2004; Wang,

Zhang and Dai 2007). However, model based approaches tend to suffer

greatly from self-occlusion of the hand, variation in background color and

most importantly they are computationally very expensive. This again

poses problems for real-time implementation.

2.2. View Based Approach

The difficulty of parameter estimation in the model based approaches lead

to the significant focus on the view based approaches, which are also

known as appearance based approaches (Black and Jepson 1996; Cui and

Weng 1996; Gupta, Mittal, Dutta et al 2002; Wong and Cipolla 2005). View

based approaches use a single camera to capture the hand gesture. As the

view based approaches only use the single camera, these methods are less

complex, easy to implement, cost effective and computationally much

faster than model based approaches. The key difference between model

based and view based approaches is the feature extraction step. Model

based approaches construct the 3D hand model from the multiple cameras

view by applying stereo vision approach and extract the features by

estimating the joint angle of fingers and palm; while view based

approaches work by capturing 2D hand gesture images using single

camera and there are various methods that exist for feature extraction.

However, most of the view based approaches further apply the eigenvector

approach to reduce the high dimension points of the image to low

dimension points image. As eigenvector transfer or map high dimensions

points to less dimensions points, which not only help to reduce the

computational time dramatically but importantly also help to create the

Real-time hand gesture recognition for small devices Page 8

user’s hand shape, space and occlusion invariant solution. Finally, the

extracted features are classified using machine learning algorithms.

Most of the early view based approaches used skin color as a key to find

the motion regions (Stenger 2006). However, the skin color detection is

highly effected by lighting conditions in the environment. An alternative

new approach for features extraction is use of local scale-invariant

features transform (SIFT) (Lowe 1999). Wang and Wang (2008) have shown

encouraging results using SIFT. The problem with the SIFT is again the

computationally expensive. The optic flow method used by Essa and

Pentland (1997) is another view based method. However, optic flow method

is more suitable to tack the overall motion of the body not the relatively

small spatial area of the hand movement.

Another noble view based approach for feature extraction is called

temporal template, a 2D image where the pixel value at each point

represents the motion in that spatial location in the sequences of images,

is introduced by Bobick and Davis (2001). The 2D vector image called

Motion History Image (MHI) captures the spatial motion region on

subsequent frames. MHI is further processed to find the motion gradient

orientation (MGO) in each point and used as features vector for gesture

classification (Bradski and Davis 2000). Due to the only 2D image

calculation involve in MHI and MGO, the temporal template based method

get advantage to run on real-time. Hence, this dissertation will explore the

hand gesture recognition using the MHI and MGO approaches proposed by

Bradski and Davis (2000) and Bobick and Davis (2001).

2.3. Gesture classification

After the features extraction, we could classify the features vector into a

number of pre-define gestures. There are two major types of gesture

classification method exist, which are defines as below.

Real-time hand gesture recognition for small devices Page 9

2.3.1. Rule Based Method

In this approach, the manually encoded rules for gestures are compared

with the input features vector. Rules are matched against the features

vector and gesture associated with the best matching rule is declared as

resultant gesture. For an example, Cutler and Turk (1998) used the rule

based method to identify the actions based on hand motion. The

effectiveness of this model is based on manual ability to encode rules for

all gestures, which is the major limitation of this method for large sets of

gestures. Also, there is a limit to the human ability to write rules for

variation on hand shape, lighting changes and others.

2.3.2. Learning Based Method

The limitation of a human ability to find the relationship between high

dimensions features sets and gestures encourages the alternative

approach based on Machine Learning (ML) algorithms. As ML algorithms

are better able to self learn the relationships between variables i.e.

mapping between high dimensions features sets and gestures.

HMM (Starner, Weaver and Pentlan 1998; Lee and Kim 1999; Wilson and

Bobick 1999; Marcel 2000; Nair and Clark 2000) is the most popular ML

algorithm for gesture classification. The major reason for HMM’s

popularity is due to its success on similar kind of voice and hand writing

recognition problems. The HMM algorithm is also not problem free. The

major problem is the choice of the number of states and transitions. And

more importantly the transitions from one stage to another stage, which is

do not map well to the real-world processes (Derpanis 2004).

Alternatively, Time-Delay Neural Networks (TDNN) (Fels and Hinton 1997;

Yang and Ahuja 1998), finite state machines (Bobick and Wilson 1997;

Manresa, Varona, Mas et al 2005) and AdaBoost (Chen, Georganas and

Petriu 2007; Francke, Ruiz-del-Solar and Verschae 2007) are also have

been used for gesture classification problem, among them AdaBoost is

Real-time hand gesture recognition for small devices Page 10

getting remarkably good success due to adaptive nature of its learning

capability.

2.4. Summary of the Literature Review

In summary, though 3D model based approaches are robust but they are

computationally expensive. Hence, this dissertation will focus on the view

based approach. Extraction of the features vector though SIFT, Optic Flow

and Haar-like (Lienhart and Maydt 2002; Chen, Georganas and Petriu

2007) methods have seen significant success but as this dissertation is

mainly focused on low resource devices it will focus on the temporal

template method. Use of the temporal template method requires low

memory and processing capacity. We will experiment with NB classifier,

RVM, RBF and MLP. However, we will also compare our results with

Support Vector Machine (SVM), the de-facto standard of machine learning

algorithms.

It is strongly believed that human vision system directly recognizes the

movement from the motion itself i.e. without constructing the 3D model

(Bobick and Davis 2001). This is another strong reason why we have

chosen the vision based approach. Also, MHI represents the recency of the

motion i.e. the how of the motion. Thresholding the MHI or MGO gives the

region of the motion i.e. the where of the motion. Where or how is how we

believe that human visual cortex process the visual information in the

brain to recognize objects (Ungerleider and Mishkin 1982; Milner and

Goodale 1995). That is another reason why it was decided to use the

temporal template (i.e. MHI and MGO) based methods.

The main purpose of this dissertation is hand gesture recognition system

for low resource devices. Hence, the focus will be on experiments with

different algorithms and on comparisons of their advantages and

disadvantages regarding their suitability for implementation on low

resource devices rather than just focusing on improvement of one

Real-time hand gesture recognition for small devices Page 11

classification algorithm’s gesture classification rate. The methods used for

experiments are described in detail in section 3.

Real-time hand gesture recognition for small devices Page 12

3. Research Methodology

Research methodology for real-time hand gesture recognition can be

divided onto two parts. One is features extraction and another is gestures

classification, both have been separately described below.

3.1. Feature Extraction

This dissertation uses the temporal template approach to extract the

features vector. The features vector is created using Motion Gradient

Orientation (MGO), which is proposed by Bradski and Davis (2000). Again,

MGO is calculated using timed Motion History Image (tMHI), which is

proposed by Davis (1999) and further improvement on Bobick and Davis

(2001).

3.1.1 timed Motion History Image

To represent the how motion Bobick and Davis (2001) proposed the MHI.

However, the representation of the MHI in floating point time manner i.e.

timed motion history image (tMHI) is proposed by Bradski and Davis

 3
Research
Methodology

Real-time hand gesture recognition for small devices Page 13

(2000). tMHI is built by copying each frame’s silhouette values with a

floating point timestamp to the tMHI. The tMHI is represented as below,

,ݔሺ ܫܪܯݐ ሻݕ ൌ ቐ
,ݔሺ ݐܽ ݁ݐݐݑ݋݄݈݅ݏ ݐ݊݁ݎݎݑܿ ࢌ࢏ ݐ ሻݕ
,ݔሺܫܪܯݐ ࢌ࢏ ࢋ࢙࢒ࢋ 0 ሻݕ ൏ ሺݐ െ ሻߜ

 ݄݃݊݅ݐ݋݊ ݋݀ ࢋ࢙࢏࢝࢘ࢋࢎ࢚࢕
 ሺ3.1ሻ

Where, t is current timestamp and  is the maximum time duration to

keep the motion history. The representation of the motion in timed manner

makes the tMHI independent of the system speeds or frame rates within

limits i.e. MHI capture the same area even with different frame rates

(Bradski and Davis, 2000). Figure 3.1 shows a typical example of tMHI

with a left moving hand, the tMHI value in other area than hand motions

shows that the body movement is not controlled for while making the hand

gestures.

Figure 3.1: tMHI example of move left hand gesture, where body movement
has not been controlled.

3.1.2. Motion Gradient Orientation

If we take the gradient of the tMHI (ref. figure 3.1), we could get the

direction of the motion, which will gives us a normal optical flow

representation (Bradski and Davis 2000). The gradient of the tMHI could

be easily calculated by convolving with Sobel filters in the X and Y

Real-time hand gesture recognition for small devices Page 14

direction yielding the derivatives Fx(x,y) and Fy(x,y) respectively. Then,

motion gradient orientation (MGO) at each pixel is given by,

߶ሺݔ, ሻݕ ൌ ݊ܽݐܿݎܽ ி೤ሺ௫,௬ሻ
 ிೣ ሺ௫,௬ሻ

 ሺ3.2ሻ

To avoid the gradient orientation on the edge of tMHI, which otherwise

would negatively impact the MGO value and area of motion gradient, we

initialize the MGO to zero where the neighboring differences are either too

high (due to the larger temporal disparity) or too low (inside a silhouette).

An example of MGO image for the tHMI show in figure 3.1 is shown in

figure 3.2 below.

Figure 3.2: An example MGO image for move left hand gesture. The
corresponding tMHI is show in figure 3.1.

3.1.3 Dimension Reduction

To create the features vector from the MGO image as shown in figure 3.2,

75% size of the MGO has been reduced i.e. reduced from 320x240 pixels

size to 80x60 pixels by maintaining the height and width ratio. This needs

to be done because otherwise it would require a high amount of memory

for further processing and would be difficult to implement in low resource

devices. Principle Component Analysis (PCA) has been used to generate the

final features vector. The number of most variant or largest principle

Real-time hand gesture recognition for small devices Page 15

components used was dependent upon the applied gesture classifier

method. We have followed the following steps for PCA,

i. Input training data and number of largest or most variant

principle components (K) to use for features extraction.

ii. Subtract the mean from training data.

iii. Calculate the covariance matrix of training data, covResult

(using MATLAB’s cov function).

iv. Calculate the eigenvector V (using MATLAB’s eig function)

using covResult matrix.

v. Desired features vectors = training data * V using K largest or

most variant principle components.

The major reason for PCA is dimensions reduction, which not only helps to

reduce the processing complexity but at the same time smoothes the noise

up to a certain level.

3.2. Gesture Classification

The aim of this dissertation is to find the real-time gesture recognition

methodology for low resource devices, hence we have experimented using

different classification methodologies and also compare our results with

most popular SVM classifier. Used classification methodologies are

described below. Only 9 gestures are experimented with in this

dissertation, hence all methods implemented 9 different small networks for

each gesture.

3.2.1. Naïve Bayes

One of the simple Bayesian learning algorithms, which often performs

better than complex algorithm in many cases, is called naïve Bayes

Real-time hand gesture recognition for small devices Page 16

classifier. The basic principle behind naïve Bayes classifier is that it tries

to maximize the posterior probability (MAP).

Suppose we would like to learn a function f, which would map a training

sets X with attribute values (x1, x2,….xn) to target Y with target possibilities

(y1, y2,…yn) i.e. f: X->Y. This problem can be formulate as MAP hypothesis

as below,

ெ஺௉ݕ ൌ ௬೔ є ௒ݔܽ݉݃ݎܽ ܲሺݕ௜|ݔଵ, ,ଶݔ … ௡ሻݔ ሺ3.3ሻ

We could rewrite equation (3.3) using Bayes theorem as below,

ெ஺௉ݕ ൌ ݔܽ݉݃ݎܽ
௬೔ є ௒

ܲሺݔଵ, ,ଶݔ … ௜ሻݕ௜ሻ ܲሺݕ | ௡ݔ
ܲሺݔଵ, ,ଶݔ … ௡ሻݔ

As this is the maximization problem we could remove the denominator,

hence,

ெ஺௉ݕ ൌ ௬೔ є ௒ݔܽ݉݃ݎܽ ܲሺݔଵ, ,ଶݔ … ௜ሻݕ௜ሻ ܲሺݕ | ௡ݔ ሺ3.4ሻ

As we assume that all attributes of x are independent to each other, hence

we could rewrite equation 3.4 as below,

ெ஺௉ݕ ൌ ௬೔ є ௒ݔܽ݉݃ݎܽ ܲሺݕ௜ሻ∏ ܲሺݔ௞|ݕ௜ሻ௡
௞ୀଵ ሺ3.5ሻ

As features vectors are in continuous form, this dissertation follows

common Gaussian approach by estimating mean and standard deviation

for each combination of xk and yi to calculate the P(xk|yi). The naïve Bayes

classifier is very simple model to implement and it requires very little

calculation. Hence, this is good candidate for gestures classification on low

resource devices.

Real-time hand gesture recognition for small devices Page 17

3.2.2. Sparse Bayesian Classifier

Sparse Bayesian classifier or Relevance Vector Machine (RVM) is a binary

classifier, whose output is probabilistic. For N feature vectors or training

sets xn with target tn, ሼݔ௡, ௡ሽݐ
ܰ

݊ ൌ 1 , the classification problem is learning a

function f so that features vector xn will correctly map onto the correct

class tn. The probability of xn to correctly classify tn is given by ߪሺݕ௡ሻ ൌ

1/ሺ1 ൅ ݁ି௬೙ ሻ, where yn = f(xn).

And the function f is define as,

݂ሺݔ௡ሻ ൌ ෍ ௡ሻݔ௠ሺ׎௠ݓ ൅ ݓ଴

ெ

௠ୀଵ

Where, M < N, w is weight, w0 is bias term and ߔm(xm) is kernel function.

This dissertation uses the Gaussian kernel with width 1.

The classification process of RVM use Bernoulli likelihood and sigmoid link

function to calculate the P(t|x). Hence, the likelihood is given by,

ܲሺݓ|ݐሻ ൌ ∏ ;௡ݔሺݕሼߪ ሻሽ௧೙ ሾ1ݓ െ ሻሽሿଵି௧೙ேݓ;௡ݔሺݕሼߪ
௡ୀଵ ሺ3.6ሻ

Where, target tn Є {0.1} and w is the weights vector. This process further

follows the Laplace approximation procedure similar to MacKay (1992).

The detail of the model is explained in Tipping (2001) and online adaptive

training procedure in Tipping and Faul (2003). The major advantages of

RVM are sparse solution i.e. a lower number of kernel points and

probabilistic output. The sparse nature of the model means it requires less

calculation and probabilistic output means we could in future supply this

output as input to other systems if needed.

Real-time hand gesture recognition for small devices Page 18

3.2.3. Multi-Layer Perceptron

Artificial Neural Networks (ANNs) are inspired by the observation that

biological learning systems are build by complex webs of interconnected

neurons (Mitchell 1997). Multi-layer perceptrons trained using error back-

propagation algorithm are good for high dimensional non-linear area

classification problem. A typical example of multi-layer perceptron with 2

layers and one hidden layer is shown below.

Figure 3.3: An example of 2-layers perceptron with one hidden layer.

The output of a node on ANNs is represented by,

௝ݔ ൌ ∑ ௜ݔ ௜௝ݓ ൅ ݓ଴
௡
௜ୀଵ ሺ3.7ሻ

Where, xj represent the output of the node, wij is the connection weight

between input xi node to output xj node of forward layer and w0 is the bias

term.

The weight update rule using error back propagation algorithm is,

௜௝ݓ ൌ ௜௝ݓ ൅ ߟ כ ∆௝ כ ௜ (3.8)ݔ

Real-time hand gesture recognition for small devices Page 19

Where, wij is the connection weight between input xi to xj node of forward

layer and ∆j is the summation of all errors caused by connection form jth

node to next layer’s k nodes. However ∆j is different for output layer and

hidden layers,

For output layer,

∆j ൌ g’ሺinሻ * ሺTarget – Outputሻ

While for non output layers,

∆j ൌ g’ሺinሻ * ∑ ∆௞௞ כ ௝௞ݓ

g’ is derivative of the activation function g and ‘in’ represented the output

of the node. This dissertation uses Mean Square Error (MSE) for error

measurement. MLP with just 2 layers of weights are capable of

approximating any continuous function (Bishop 1995), hence this

dissertation will also experiment with MLP.

3.2.4. Radial Basis Function

Radial basis function (RBF) performs the exact interpolation of a set of

points in a multi-dimensional space (Powell 1987).

Figure 3.4: An example of RBF.

Real-time hand gesture recognition for small devices Page 20

RBFs function are represented as below,

݂ሺݔሻ ൌ ଴ݓ ൅ ∑ ݔ || ሺߔ ௝ݓ െ ௝ ||ሻ௄ݔ
௝ୀଵ ሺ3.9ሻ

Where, w0 is the bias term, K is number of kernels, xj is a kernel point, x is

a data point and ߶ is kernel function. If there is N number of data then K

should be less than or equal to N. This dissertation uses k-means

algorithm to find the kernel points and the Guassian kernel function. The

values of weights (w) are approximated using inverse of ߶ matrix and

multiplying with targets of training samples. RBF is very fast to train, it

also uses only a single hidden layer, which makes it less complex.

3.2.5. Support Vector Machine

Support Vector Machine (SVM) is the most popular classification algorithm

of machine learning. It is developed by Vapnik (1979) and popularized by

Schölkopf(1997), Vapnik (1998) and Burges (1998). SVM perform very well

especially in high dimension data. As SVB first transfer the data from non-

linearly separable data to linearly separable hyperplane then finds the

classification boundary with equal distance from the both classes. More

detail of the SVM can be found on Vapnik (1998). However, a brief

description is defined here.

For the two class, c Є {-1, 1}, classification problem using supervised

learning method and the training set {xi, ci} for xi Є Rn, x is feature vector

and R is n dimension hyperplane, there exist a following equation,

ሺݓ. ௜ݔ ൅ ܾሻܿ௜ ൒ ݅׊ 0 ሺ3.10ሻ

Where, w is the weight matrix and b is bias term.

Real-time hand gesture recognition for small devices Page 21

4. Experiments and Results

The results presented below were taken as average of 25 repeats using 5-

fold cross-validation. The used codes for these experiments were

implemented using MATLAB 7.8 (R2009a) code and self written except

RVM and SVM libraries. The experiments were executed on normal home

use P4 personal computer with a 2.13GHz Intel® processor and 2GB of

memory. A number of preset parameters were chosen so as to be suitable

for low resource devices, the values of these preset parameters are

separately described below along with the rationale behind their choice.

4.1 Description of Data

The experiments made use of 9 single hand gestures, they were: (1) bye, (2)

come, (3) down, (4) go, (5) good luck, (6) left, (7) right, (8) up, and (9)

victory. Sample tMHI and MGO for these gestures are shown in figure 4.1.

 4
Experiments
and Results

Real-time hand gesture recognition for small devices Page 22

Bye tMHI Bye MGO

Come tMHI Come MGO

Down tMHI Down MGO

Go tMHI Go MGO

Good Luck
tMHI

Good Luck
MGO

Left tMHI Left MGO

Right tMHI

Right MGO

Up tMHI Up MGO

Victory
tMHI

Victory MGO

Figure 4.1: Example tMHI and MGO for the 9 gestures used in experiments.

The data was captured on unrestricted background and lighting condition

using a laptop webcam at 320x240 pixels resolution and 15 frames per

second. However, background objects were constant i.e. not moving. Four

signers are used for experiments; two males and two females. Each signer

was recorded 3 times for every gesture to give a total of 25 samples for

each of the 9 gestures. The recording sessions for each signer were spread

over 3 different times of day and under varying background and lighting

conditions. The lighting conditions used were normal room lighting at day

time, natural sunlight and neon tube lighting at night. The speed of the

hand, body and head movements as well as the spatial location of the

hand gestures was not controlled. The signers were instructed to allow

Real-time hand gesture recognition for small devices Page 23

variations while making the gestures. This is clearly visible from

observation of the tMHI and MGO images seen in figure 4.1.

In summary, four signers were used for data collection resulting in 9,500

hand gesture videos with approximately the same number for each

gesture.

4.2 Assumption of Low Resource Device

In our context a low resource device means a system with a low resolution

camera, small memory size, and slow processing capacity. The

experiments were conducted on a relatively powerful desktop computer,

therefore it was important that usage of memory and processing were

restricted. This would allow easy transfer of the system to low resource

devices. With this in mind two very crucial decisions were made regarding

experiments. First, the MGO images were resized to 80x60 pixels before

generating the features vector and second, the size of features vector (K)

was restricted to be less than or equal to 30. Lower sizes of feature vector

correspond to lower memory and computation resource requirements for

the models; this made them more viable for low resource devices.

4.3 Parameters Tuning

Parameters tuning for any model always requires that very careful

attention be paid to each variable. This is made more difficult when

variables of the model are dependent to each other. Moreover, parameters

tuning is very critical task when comparing the performance of different

models as the performance of each model for a given problem is usually

very sensitive to the parameters used. Hence, parameters tuning was done

in two steps. As a first step the parameters for each model were tuned

separately. After the parameters for each model had been tuned the

Real-time hand gesture recognition for small devices Page 24

experiments were carried out to compare the models with each other. The

size of the features vector had the single biggest influence in terms of

performance and processing speed of the models.

4.3.1. Naïve Bayes

Naïve Bayes is easiest model to tune of those presented here. One

important observation was when the number of negative training gestures

increased the success of positive-positive tests would decrease relative to

the success of negative-negatives tests, the inverse of this also held when

the number negative training gestures were decreased. The reason for this

was the higher prior probability for negative conditions due to higher

quantity of negative training data. The numbers of positive and negative

samples in the training data do not reflect the true operating conditions of

the gesture recognition system. Hence, equal prior probability was used for

all cases, which means only likelihood probabilities were able to influence

the results.

The naïve Bayes classifier’s performance was based on size of features

vector (K) i.e. the number of features or number of most variant principal

component used in PCA in this context. Experiments were conducted to

find the best size for the features vector for the naïve Bayes classifiers.

Table 4.1 shows the success rate of hand gesture recognition for different

value of K using the naïve Bayes classifier. It is clearly noticeable that for

all 9 gestures, the success rate increases with the value of K. This is

because as number of gestures increases the naïve Bayes model requires

more features to optimally indentify the range of mean and standard

deviation to associate them with a particular gesture. However, this does

not mean that increase in K continuously increase the performance, as

that will cause over fitting of the model after certain point. Proof of this is

provide by the fact that the success rates was grater with values of K less

than 30 when only two gestures were used (ref. table 4.1).

Real-time hand gesture recognition for small devices Page 25

From the table 4.1 it is noticeable that left and right gestures are easier to

recognize than up and down because they involve more movements then

than up and down gestures, this can be seen in figure 4.1.

K All gestures Left and
Right

gestures

Up and
Down

gestures

Left and Right
gestures by one

signer

Up and Dow
gestures by
one signer

5 64 88 80 100 89
6 66 89 87 100 94
7 68 94 85 100 93
8 71 95 89 100 92
9 72 93 95 100 93
10 72 95 95 100 93
11 73 95 96 100 92
12 73 93 96 100 91
13 75 93 97 99 93
14 76 93 91 100 93
15 77 92 92 99 92
16 78 91 94 99 92
17 79 90 94 98 91
18 79 91 96 98 92
19 80 91 96 97 91
20 80 91 97 97 90
21 80 91 97 97 90
22 80 90 96 97 89
23 81 89 96 97 88
24 81 89 96 97 88
25 81 88 96 97 87
26 81 87 96 96 87
27 82 87 96 96 85
28 82 86 95 97 86
29 82 86 95 97 85
30 82 86 95 96 85

Table 4.1: Success rate of hand gesture recognition using naïve Bayes
classifier for K equal to 5 to 30 have been listed for different combinations of

gestures.

It might be interesting to look at how values of K greater than 30 would

affect the success rates but this was not explored due to the time

limitation for this research and the small devices assumption. For further

experiments K equal to 27 was used for naïve Bayes classifier because this

value gave the best results for all singers. However, K equal to 13 was used

for single signer hand gestures recognition.

Real-time hand gesture recognition for small devices Page 26

4.3.2 Sparse Bayesian Classifier

A library for sparse Bayesian classifier was used from Tipping (2009),

which was based on Tipping (2001) and Tipping and Faul (2003). Different

values for sparseness of the model and basis width were tried but the

default values—70% for sparseness of the model and 0.05 for basis

width—appeared to be optimal for the task i.e. there no significant

improvement on RVM model with different values of the mentioned

parameters.

K All gestures Left and
Right
gestures

Up and
Down
gestures

Left and Right
gestures by
single signer

Up and Dow
gestures by
single singer

 5 50 49 48 46 48
 6 50 49 48 46 48
 7 50 49 48 46 48
 8 50 49 48 46 48
 9 50 49 48 46 48
10 50 49 48 46 48
11 50 49 48 46 48
12 50 49 48 46 48
13 50 49 48 46 48
14 50 49 48 46 48
15 50 49 48 46 48
16 50 49 48 46 48
17 50 49 48 46 48
18 50 49 48 46 48
19 50 49 48 46 48
20 50 49 48 46 48
21 50 49 48 46 48
22 50 49 48 46 48
23 50 49 48 46 48
24 50 49 48 46 48
25 50 49 48 46 48
26 50 49 48 46 48
27 50 49 48 46 48
28 50 49 48 46 48
29 50 49 48 46 48
30 50 49 48 46 48

Table 4.2: Success rate of hand gesture recognition using sparse Bayesian
classifier for K equal to 5 to 30 have been listed for different combinations of

gestures.

Table 4.2 shows the success rates for different value of K using RVM. It is

clearly noticeable that K between 5 and 30 does not affect the performance

of the RVM. More importantly, when all 9 gestures by all four signers were

Real-time hand gesture recognition for small devices Page 27

used the success rate was slightly higher than when only 2 of the gestures

or only a single signer were used. The success rate of RVM was lower than

naïve Bayes, this has been discussed separately below. For further

experiments with RVM a value of 5 was used for K.

4.3.3 Multi-Layer Perceptron

In this problem experiments show that a learning rate of 0.05 with

momentum of 0.005 (10% of the learning rate) and approximately 400

iterations give the best results for MLP. However, it was observed that

increases in the size of the features vector (i.e. number of input variables)

increases the number of required iterations and causes the error rate to

fluctuate. This is because the search space for optimum weights increases

along with number of dimensions of the input features vector. This is

because as the number of dimensions increases there is a larger area to

search and more chances to get stuck in local optima.

Three layered MLP with one hidden layer was seen to give the best

performance with no benefit being seen from additional hidden layers. The

choice of the value of K and the number of hidden nodes was most difficult

because both were highly dependent. For each value of K between 5 and

30, experiments were conducted with 3 to 30 hidden nodes. It would be

unwise to present such a big table here so the results of the experiments

will be briefly described instead. In all combinations of K and hidden nodes

success rate was greater than 55. For all K with more than 6 hidden nodes

success rate was greater than 65 and success rate was within the range of

65 to 73. Based on the experiments it was decided to use K equal to 8 and

12 hidden nodes. The success rate for the chosen combination was 72.

Though the highest success rate of 73 was seen with 4 more hidden nodes

it was decided to use the lower number based on the assumption of a low

resource device.

Real-time hand gesture recognition for small devices Page 28

4.3.4 Radial Basis Function

RBF has less numbers of parameters to tune than MLP. The most

important parameter is the choice of kernel function, the number of

kernels and their values. K-mean clustering was used to calculate the

values for the kernels.

To take the decision on the value of K and number of kernels, for each

value of K between 5 and 30 experiments were carried out with between 3

and 30 kernels. As before it would be unwise to present such a big table

here. Hence only the results of the experiments will be briefly described

here. The highest successes rate was 86 with K equal to 27 or more and

the number kernels equal to 15 or more. Hence, for the further

experiments with RBF, K equal to 27 and 15 kernels was used.

4.3.5 Support Vector Machine

MATLAB’s SVM library had been used to test the SVM model. Over the

linear, quadratic, polynomial and MLP, RBF as kernel function had

performed the better in case of this dissertation.

Table 4.3 shows the success rate of hand gesture recognition for different

values of K using SVM. It is clearly noticeable that effect of changes in K

between 5 and 30 is significant. Importantly, the value of K between 5 and

8 performs better than higher values of K. As expected the recognition rate

for single singers is better than when using all four signers. For further

experiments K equal to 6 was used for SVM.

Real-time hand gesture recognition for small devices Page 29

K All
gestures

Left and
Right
gestures

Up and
Down
gestures

Left and Right
gestures by one
signer

Up and Dow
gestures by
one signer

 5 53 54 66 67 55
 6 63 58 64 65 55
 7 62 58 62 65 54
 8 60 55 60 60 53
 9 58 54 57 55 53
10 56 53 56 54 52
11 54 52 55 54 53
12 53 51 55 54 52
13 52 51 54 54 52
14 52 51 54 54 52
15 51 50 53 54 52
16 51 51 53 54 52
17 51 51 53 54 52
18 50 50 53 54 52
19 50 50 53 54 52
20 50 50 52 54 52
21 50 50 52 54 52
22 50 50 52 54 52
23 50 51 52 54 52
24 50 51 52 54 52
25 50 50 52 54 52
26 50 51 52 54 52
27 50 51 52 54 52
28 50 50 52 54 52
29 50 50 52 54 52
30 50 50 52 54 52

Table 4.3: Success rate of hand gesture recognition using sparse SVM for K
equal to 5 to 30 have been listed for different combinations of gestures.

4.4 Results

In this section, the results of the experiments have been presented.

Descriptions of the research environment and data have been provided on

section 4.1. Implication of the experiments results have been described in

section 5 separately.

4.4.1 Single Signer Hand Gestures Recognition

The success rates (as percentages) of the hand gestures recognition for a

single signer are shown in table 4.4.

Real-time hand gesture recognition for small devices Page 30

 RBF MLP NB SVM RVM
Bye 85 78 92 60 50
Come 98 86 94 79 50
Down 100 85 87 53 50
Go 87 72 91 66 50
Good Luck 97 76 94 53 50
Left 96 76 94 55 50
Right 100 95 100 56 50
Up 98 79 92 54 50
Victory 91 74 94 57 50
All
gestures

94.67 80.11 93.11 59.22 50

Table 4.4: Success rates of single signer hand gestures recognition for
different methods.

RBF outperforms the other methods for single signer hand gesture

recognition. However, naïve Bayes classifier success rate of 93.11 on all

gestures is only slightly less than the 94.67 success rate of the RBF.

Moreover, NB outperforms RBF in cases of bye, go and victory gestures.

RVM is not able to discriminate the single signer hand gestures as there

are 50% positive and 50% negative test cases. SVM’s overall success rate

of 59.22 is not at all impressive even when compared to MLP, as MLP’s

overall success rate is 80.11.

The above experiments show that even the simplest algorithm (NB) could

outperform the most advanced and complex algorithm (SVM). This clearly

indicates that none of the algorithms are superior over others in all case—

performance is problem specific.

4.4.2 Four Signers Hand Gestures Recognition

The success rates (in percentages) of the hand gestures recognition using

data from all four signers is shown in table 4.5.

Real-time hand gesture recognition for small devices Page 31

 RBF MLP NB SVM RVM
Bye 75 59 84 62 50
Come 81 73 80 77 50
Down 88 75 89 77 50
Go 79 61 73 64 50
Good Luck 89 72 81 62 50
Left 87 68 84 67 50
Right 95 76 88 81 50
Up 91 79 82 68 50
Victory 80 67 70 58 50
All
gestures

85.00 70.00 81.22 68.44 50

Table 4.5: Success rates of four signers hand gestures recognition for
different methods.

When data is used from all four signers, RBF and NB successfully classify

85% and 81.22% of the hand gestures respectively. However, differences in

the success rate between NB and RBF is higher than in the single signer

case. Again, NB outperforms RBF in cases of the bye and down gestures.

RVM is still not able to discriminate the hand gestures when four signers

are used as there are still 50% positive and 50% negative test cases.

Importantly, SVM’s overall success rate of 68.44 is higher than the 59.22

success rate in the single signer case, which clearly indicates that SVM

performs better in higher dimension problems. Similar with RBF, MLP’s

success rate is decreased by approximately 10%.

4.4.3 Effect of Training Size

The size of training samples has crucial role in the implementation of all

methods because in many cases collecting samples data is not only time

consuming but is costly as well. Also, in supervised learning case such as

this the labeling of training data is a tedious manual job. Hence the

comparison of the success rate with various amounts of training data is

important when comparing the different methods.

Real-time hand gesture recognition for small devices Page 32

 RBF MLP NB SVM RVM
200 (100
positives
and 100
negatives)

Bye 76 58 84 61 50
Come 81 72 80 77 50
Down 88 75 89 76 50
Go 79 59 73 64 50
Good Luck 88 73 82 62 50
Left 87 68 81 67 50
Right 95 75 90 81 50
Up 90 80 80 68 50
Victory 81 64 69 59 50
All 85.00 69.33 80.89 68.33 50

100 (50
positives
and 50
negatives)

Bye 72 57 83 65 50
Come 79 74 77 69 50
Down 87 71 86 69 50
Go 76 57 67 57 50
Good Luck 83 70 78 57 50
Left 83 64 80 65 50
Right 94 75 89 70 50
Up 84 75 75 56 50
Victory 75 64 73 63 50
All 81.44 67.44 78.67 63.44 50

50 (25
positives
and 25
negatives)

Bye 71 51 80 66 50
Come 75 75 74 70 50
Down 81 68 75 67 50
Go 78 53 64 63 50
Good Luck 80 70 75 59 50
Left 75 57 84 65 50
Right 95 73 79 75 50
Up 74 72 77 50 50
Victory 71 63 74 65 50
All 77.78 64.67 75.78 64.44 50

30 (15
positives
and 15
negatives)

Bye 61 60 75 57 50
Come 58 73 74 73 50
Down 71 66 67 70 50
Go 81 51 53 60 50
Good Luck 75 69 66 61 50
Left 70 49 77 55 50
Right 96 74 79 63 50
Up 73 65 72 50 50
Victory 71 53 71 56 50
All 72.89 62.22 70.44 60.56 50

 Table 4.6: Success rates of hand gestures recognition using different
methods with 200, 100, 50 and 30 training sets for each gesture. There were

50% positive and 50% negative training samples in each case.

From table 4.6 it is clear that the success rates increase along with

training data set size for each method except in the case of RVM. However,

Real-time hand gesture recognition for small devices Page 33

RBF’s success rate varies most while MLP’s success rate varies less. When

training size increased from 30 to 200 RBF’s success rate increases by

12% and MLP’s by 7% approximately. This clearly indicates that MLP

could train using a smaller training set than RBF.

4.4.4 Training and Testing Duration

As this dissertation is aiming for real-time hand gestures recognition for

small devices a comparison of processing time is essential. However,

training time is also important because longer time always consume more

resources.

 RBF MLP NB SVM RVM
450 training
sets time (sec)

812.71 824.25 806.68 799.91 805.68

950 training
sets time (sec)

1106.65 1114.66 1107.99 1106.63 1106.52

Table 4.7: Training time required for different methods in seconds, which also
including 5-fold cross-validation.

The training time shown in table 4.7 includes MHI and MGO calculation,

PCA for features extraction as well as 5-fold cross validation. From the

experiment results shown in table 4.7 it is clear that the required training

time for all methods is less than 20 minutes even with 950 hand gestures

videos. The differences between the training times required for all methods

are less than 30 seconds. From the observation of training time with 450

and 950 hand gestures, it is clear that training time is not linear with

number of gestures used in training.

Real-time hand gesture recognition for small devices Page 34

 RBF MLP NB SVM RVM
MHI
update
time (sec)

0.00370332 0.00370332 0.00370332 0.00370332 0.00370332

MGO
calculation
(sec)

0.0564 0.0564 0.0564 0.0564 0.0564

Features
extraction

0.000129 0.000129 0.000129 0.000129 0.000129

1 gesture
testing
time (sec)

0.000039823 0.00000104292 0.00014070796 0.0000057522 0.000000428849

Total (sec) 0.060272143 0.06023336292 0.06037302796 0.0602380722 0.060232748849
15 frames
per sec

0.904082145 0.9035004438 0.9055954194 0.903571083 0.903491232735

Table 4.8: Processing time required for different methods in seconds.

If the system is to run in real-time then processing time for gesture

classification becomes much more important than training. As the system

under discussion is a template based features extraction system it would

be possible to continuously update a single tMHI. This would mean that to

process each new video frame it would only be required to do the following

jobs: (1) update the tHMI with new arrival frame, (2) calculate the MGO, (3)

extract the features from the MGO using PCA and (4) classifying the

gesture.

From the results of above experiments it can be seen that although the

system could be implemented in real-time using a PC with a Core 2 Duo

2.13GHz processor it might not be feasible to implement in low resources

devices as is. From the table 4.8, it is clearly noticeable that approximately

94% of the processing time is consumed by the MGO calculation. Hence

we might look for an alternative to MGO calculation or at continuous MGO

calculation in a similar way to tMHI. The reasons for the long processing

time and how it could be improved in an implementation for low resource

devices have been separately discussed in section 5.1.

Real-time hand gesture recognition for small devices Page 35

5. Discussion and Conclusion

5.1. Discussion

SVM is a state-of-the-art classifier, which outperforms the other methods

in most of the problems and is useful in all kinds of problems and areas.

RVM is another state-of-the-art method whose results are comparable with

SVM. Moreover, the probabilistic output (posterior probability) and sparse

solution of RVM makes it attractive over SVM. Therefore the highly

uncompetitive results seen here for SVM and RVM when compared to RBF

and NB is surprising and warrants further investigation on the

implementation of SVM and RVM. For this dissertation the SVM library

from MATLAB and RVM library from the Tipping (2009) were used. These

implementations are considered reliable as evidenced by the similar

results obtained by Wong and Cipolla (2005) in their experiment using the

tMHI and MGO. However, Wong and Cipolla (2005) further improved the

50% success rate of hand gestures recognition using adaptive online

 5
Discussion
and
Conclusion

Real-time hand gesture recognition for small devices Page 36

learning, which had not been done in this dissertation as it was not

considered compatible with the goal of suitability for low resource devices.

SVM maps non-linear boundaries to linear ones then maximizes the

decision boundary’s distance with two groups. That is the reason why SVM

works better in high dimensional problems. The video frames were reduced

by 75%, which also reduced the dimensions of the features vector. This

gives one reason why SVM was unable to perform as expected. For a given

range of values for features (value of MGO in each pixels), SVM’s kernels

(also called support vectors) would be closer in lower dimension than they

would be in higher dimensions, hence generally the distance of the

boundary with different groups will be lesser, this causes poor

generalization.

Though it is claimed that RVM usually gives results comparable to SVM in

this case SVM correctly classified 68.44% of hand gestures while RVM

managed only 50% (i.e. unable to discriminate for two class problem). As

lesser number of samples and only four singers were used hence it might

be the case that as RVM generally uses less kernels (sparse solution) it is

less desirable in under sampled and hard to generalize problems (Chanel,

Kierkels, Soleymani et al 2009). Another strong reason that spatial

location of the hand gestures was not controlled and all signers had

different physical characteristics (i.e. different size and shape of hands). It

is also the case that the sample size was not large. This made estimation of

the prior as well as likelihood probabilities poorer, which adversely affected

the performance of the RVM.

Body movements, lighting conditions and movements of the background

were not strictly controlled in these experiments. This is easily noticeable

from 5 samples MGO images in Figure 5.1 for bye gesture using the same

signer in the same location and recorded at the same time of day. RBF

tends to perform better than MLP on noise data because RBF kernels do

local approximations, where as MLP does global approximations, this is

likely the reason why RBF performs better than MLP in this problem (Alejo,

Garcia, Sotoca et el 2007).

Real-time hand gesture recognition for small devices Page 37

Naïve Bayes is very simple to implement but one of the most effective

algorithms of inductive learning. The performance of NB on hand gesture

recognition is surprising here. It correctly classifies 81.22% of the hand

gestures; this is approximately 13% more than SVM, one of the most

complex and best ML algorithms. That the conditional independence

assumption is rarely true in real time is major reason for its surprising

performance, as local dependence of a node among each class and local

dependencies of all nodes together, consistently or inconsistently play a

major role. NB performs better when dependences are distributed evenly

among classes or when dependencies cancel each other out (Zhang 2005).

Figure 5.1: Sample MGO of Bye gestures by one singer

It is also worth mentioning here that for RBF, SVM, RVM and NB the

optimum solution was found most of the time and that the error rate was

consistent. In case of MLP however it was not able to find the optimum

solution each time and the error rate was also not consistent, this was due

Real-time hand gesture recognition for small devices Page 38

to the fact that the search space for the optimum solution increases with

number of nodes in network as there are more and more chances to get

stuck in local optima. The error rate for RBF, SVM and RVM also

fluctuated with changing parameters values but NB use to highly

consistence than other methods in this regard.

Although RBF and NB performed best they both required a much greater

number of features than SVM. Also MLP require more features then SVM

but still a lot less than RBF and NB. However, the increased performance

given by greater numbers of feature for both RBF and NB dropped off after

the features vector size passed 15. Hence, if the sensitivity of gestures

recognition system is not very critical then the processing complexity of

RBF and NB could be reduced by decreasing the size of features vector and

sacrificing some accuracy in the classification rate.

The major objective of this dissertation is to develop a technique suitable

for a real-time hand gestures recognition system for low resource devices

but approximately 90% processing time required (ref. table 4.8;

approximately 0.9 seconds processing time required each second) for all

used methods even in personal computer is counterintuitive. It is easy to

see from table 4.8 that MGO calculation alone consumes 93.5% of the

required processing time. That is because the project was implemented in

MATLAB which is not a suitable environment for low resource devices. As

when similar method implemented by Wong and Cipolla (2005) in C++, the

whole features extraction method took only 34.3 milliseconds, while in

our MATLAB implementation only MGO extraction took 56.4 milliseconds.

Hence, it is supposed that all the methods could be implemented more

efficiently for use in real-time on low resource devices.

Hand gestures recognition is hot research topic with one and half decades

of academic as well as industrial research. So far none of the systems has

got a 100% success result in complex hand gestures recognition with a

non-restricted environment. Does this mean we could never achieve 100%

success rate? After going through all the experiments described here I

strongly believe that we must need to look back on how biological vision

Real-time hand gesture recognition for small devices Page 39

system works. Biological systems always outperform all artificial ones and

are the best source for inspiration.

As pointed out by Wang, Zhang and Dai (2007), according to bionic view

effective tracking of the object of interest is foremost important to the

recognition of gestures, not the understanding of surrounding

environment. Hence, I would like to argue that to build a robust hand

gestures recognition system tracking of the hand is very important. When

hand tracking is not used it is not possible to distinguish the movements

of clothes, other body parts and background objects from the movement of

the hand. Hence, no matter how much the features extraction and

classification methods are improved we could not get robust results

without good hand tracking.

One can argue that we can learn from the noise and that this is what AI

aims for. Any algorithm can only learn if patterns or dependencies exist in

the data. The hand gesture could be projected in any spatial location of the

video frames, this means gestures as well as noise could be in any position

in the video frame (i.e. there exists no pattern in the spatial location).

Another possible method is to track hand colour but this is not a good

solution as discussed in the literature review. In my opinion, tracking of

the hand based on hand shape along with other cues is the best option for

robust hand gestures recognition.

The argument above might suggest that 3D models are superior to view

based hand gestures recognition models due to the fact that all 3D hand

gestures recognition models first track the hand before representing it in

3D. However, I would like to make clear that I am only arguing for tracking

of the hand i.e. tracking of object of interest in order to overcome noise.

View based methods are important and a good first choice for real-time

implementation due to processing advantage on 2D images over the

greater complexity of processing in 3D models. For this reason view based

approaches are rather important for low resources devices. Also,

Real-time hand gesture recognition for small devices Page 40

experiments on lateral occipital complex (LOC1) by Kourtzi and Kanwisher

(2001) suggest that shape of the object is the necessary condition to

recognize an object, not the depth.

5.2. Applications of the System

Hand gesture recognition research is motivated by the many potential

applications for human-machine interaction. Hand gestures recognition

would be highly useful for mediating communication between hearing

impaired and hearing people, instruction of home robots (Sing, Seth and

Desai 2005), manipulation of virtual objects, computer games and other

human-machine interactions. Also, many human behaviors are correlated

with hand gestures, such as the clenched fist signaling confrontation,

pointing with finger and others. Hence, it could be possible to extend this

hand gestures methodology to human behavior analysis as well.

More importantly, this technology could be used for remote machine

operation where direct human interaction involves high risk, such as land

mine clearance, rescue, mining and other tasks. And another important

application is in medical operations where it is important to avoid

contamination by direct contact. Hence, diverse areas would see a benefit

from hand gestures recognition technology.

1 LOC: lateral occipital complex located on ventral visual pathway played major role
on object recognition. On the experiment Kourtzi and Kanwisher (2001) found that
LOC shows the neural adaptation when same shape objects are presented and not
when different depth objects are show. Further neural adapts (stops or slow down
firing) when inputs are same and starts firing when inputs are different.

Real-time hand gesture recognition for small devices Page 41

5.3. Limitations of the Study

This research has number of limitations; some are due to the complexity of

research problem and some are due to time limitation for this research. We

have outlined major limitations as below.

1. In the samples collect the signer’s body is slightly moving but

background objects are constant. Hence, movement of background

objects would affect the system adversely.

2. This research is limited to gesture recognition using one hand. This

will limit the system in which gesture using two hands is required.

3. The experiment shown in section 4.4.3 shows that hand gesture

recognition rate increases with the number of training set but it was

not possible to test with larger training set as most of the hand

gestures recognition research use to experiments with

approximately more than three or four thousands hand gestures.

4. It would be nice to compare the hand gestures recognition rate of a

signer, which was not included in training of the system. This has

not been tested because we have neither enough hand gestures as

mentioned in above limitation no. 3 nor was it possible to more

signers. Without both more signers and more samples the

experimental results would not have been meaningful.

5. Clothes of signer’s are not moving in our samples data but in

normal usage this could sometimes be the case, for example in

windy environments.

6. The system was implemented in MATLAB which allowed quicker

development times but gave reduced performance. If the system

were implemented in C++ instead of in MATLAB it would almost

certainly run faster.

Real-time hand gesture recognition for small devices Page 42

5.4. Future Work

tMHI and MGO approaches looks very promising for hand gestures

recognition. Though tMHI involves very low processing time, MGO

calculation involves much more and consumes approximately 94% of the

time required for the whole method (ref. section 4.4.4). Hence, research

into continuous MGO update in place of the current approach of fully

calculating it for each frame would be crucial for real-time implementation

on low resource devices.

Another important area for future work would be to find a way of keeping

repeated motion history on same spatial location without directly replacing

with recent motion for tMHI as it is now. This would definitely help the

tMHI and MGO method in those hand gestures where repetition of the

hand movement is essential.

For the gesture recognition only the object of interest—the hand in this

case—is important, neither the movement of the whole body nor the

environment have any relevance. Hence, an effective hand tracking

mechanism would be important for robust hand gesture recognition. This

would allow only the motion of the hand to update the tMHI. Also, it would

be interesting to see the community network of NB and RBF.

5.5. Conclusion

A hand gestures recognition problem using temporal template approach

was experimented with; tMHI and MGO techniques were used to extract

the features vector, which were then classified using five of the most

popular machine learning algorithms. The experiments show encouraging

results using RBF and NB, with RBF able to correctly classify 94.67% for

single signer and 85% for multi-signers and NB able to correctly classify

93.11% for single signer and 81.22% for multi-signers. Hand gesture

recognition rate was 70% for MLP and 68.44% for SVM, this was far lower

Real-time hand gesture recognition for small devices Page 43

than the recognition rates of RBF and NB. A straight forward

implementation RVM had a highly uncompetitive recognition rate.

The experiments suggest that RVM does not perform well with noisy data

and SVM with low dimension data. Similarly MLP is also not a good

classifier in noisy data due to its global boundary approximation approach.

However, RBF could perform better even in noisy data as its local

approximation of the boundary using kernel points provided an advantage,

this is also another reason why RBF’s performance improves with an

increase in the number of kernels.

To implement any system in real-time, handling of noise (background

objects moving, lighting conditions and others) is very important. Hence, I

have argued that tracking of the hand is very important to develop the

robust hand gestures recognition system, which is biologically as well as

mathematically plausible.

Though the proposed system consumes the 90% of the resources in

personal computer this could be easily reduced by 50% by implementing

the system in C++ as evidenced by table 4.8 and Wong and Cipolla (2005).

Hence, the proposed system could be implemented in low resource devices.

However, for the real-time implementation, I would recommend the RBF

method due to its high success rate and the fact that it could be trained

using unsupervised method in addition to supervised methods.

In summary, even though we had not controlled the background, lighting

condition and signer’s body movement strictly, the success rates seen for

RBF and NB are comparable to the best methods available. This

dissertation shows that we could implement simple RBF and NB methods

for real-time hand gestures recognition on low resource devices and still

get results as good as the best of the currently available complex methods.

The current correct classification rate of 85% using RBF and 81.22% using

NB could be further improved by hand tracking to allow only the object of

interest to be considered; there is strong evidence that this is what is done

by the human vision system(Wang, Zhang and Dai 2007).

Real-time hand gesture recognition for small devices Page 44

Bibliography

Alejo, R., Garcia, V., Sotoca, J.M., Mollineda, R.A. and Sánchez, J.S.

(2007) Improving the Performance of the RBF Neural Networks

Trained with Imbalanced Samples. The 9th International Work-

Conference on Artificial Neural Networks, June 20-22, 2007, Spain,

pp. 162-169.

Bauer, B., Kraiss, K.F. (2002) Video-based sign recognition using self-

organizing sub-units. In: Proc. ICPR. 282–296

Binh, N.D., Shuichi, E. and Ejima, T. (2005). Real-Time Hand Tracking and

Gesture Recognition System. In GVIP 05 Conference, 19-21 Dec 2005,

CICC, Cairo, Egypt.

Bishop, C. M. (1995) Neural Networks for Pattern Recognition. Oxford

University Press, UK.

Black, M. and Jepson, A. (1996) Eigentracking: Robust matching and

tracking of articulated objects using a view-based representation. In

European Conference on Computer Vision, pp. 329–342.

Bobick, A. F. and Davis, J.W. (2001) The recognition of human movement

using temporal templates, IEEE. Trans. on PAMI, Vol. 23(3) pp. 257-

267.

Bobick, A. and Wilson, A. (1997) A state-based approach to the

representation and recognition of gesture. IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 19(12) pp. 1325–1337.

Burges, C.J.C. (1998) A Tutorial on Support Vector Machines for Pattern

Recognition. Data Mining and Knowledge Discovery, Vol. 2(2) pp. 121-

167.

Real-time hand gesture recognition for small devices Page 45

Bradski G. and Davis J. (2000) Motion Segmentation and Pose Recognition

with Motion History Gradients. IEEE Workshop on Applications of

Computer Vision, pp. 174-184.

Chanel, G., Kierkels, J.J.M., Soleymani, M., and Pun, T. (2009) Short-term

emotion assessment in a recall paradigm. International Journal of

Human-Computer Studies. Vol. 67 pp. 607-627

Chen, Q., Georganas, N.D. and Petriu, E.M. (2007) Real-time Vision based

Hand Gesture Recognition Using Haar-like features. IEEE

Transactions on Instrumentation and Measurement.

Cui, Y. and Weng, J. (1996) Hand sign recognition from intensity image

sequence with complex backgrounds. In IEEE Conference on Computer

Vision and Pattern Recognition, pp. 88–93.

Cutler, R. and Turk, M. (1998) View-based interpretation of real-time

optical flow for gesture recognition. In IEEE International Conference

on Automatic Face and Gesture Recognition, pp. 416–421.

Derpanis, G. K. (2004) A Review of Vision-Based hand Gestures.

Essa, I. and Pentland (1997), Coding, Analysis, Interpretation, and

Recognition of Facial Expressions. IEEE Trans. Pattern Analysis and

Machine Intelligence, Vol. 19 (7) pp. 757-763.

Fels, S. and Hinton, G. (1997) Glove-talk II: A neural network interface

which maps gestures to parallel format speech synthesizer controls.

IEEE Transaction on Neural Networks, Vol. 9(1) pp. 205–212.

Francke, H., Ruiz-del-Solar, J. and Verschae, R. (2007) Real-time Hand

Gesture Detection and Recognition using Boosted Classifiers and

Active Learning. pp. 533-547.

Real-time hand gesture recognition for small devices Page 46

Garg, P., Aggarwal, N. and Sofat, S. (2009) Vision Based Hand Gesture

Recognition. In proceeding of world academy of science, engineering

and technology 37 January pp. 1024-1029.

Gupta, N., Mittal, P., Dutta Roy, S., Chaudhury, S. and Banerjee, S. (2002)

Developing a gesture-based interface. IETE Journal of Research, Vol.

48(3) pp. 237–244.

Hassanpour, R., Wong, S. and Shahbahrami, A. (2008) Vision-Based Hand

Gesture Recognition for Human Computer Interaction: A Review.

IADIS International Conference Interfaces and Human Computer

Interaction.

Kim, H., Albuquerque, G., Havemann, S. and Fellner, D.W. (2004) 3D

Modeling with Hand Gesture Interaction in a Semi-Immersive

Environment

Kourtzi, Z. and Kanwisher, N. (2001) Representation of preceived object

shape by the human lateral occipital complex Science, Vol. 293 pp.

1506-1509. Avaliable from:

www.web.mit.edu/bcs/nklab/media/pdfs/KourtziKanwisherScience0

1.pdf [accessed 6 March 2009]

Lee, H. and Kim, J. (1999) An HMM-based threshold model approach for

gesture recognition. IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 21(10) pp. 961–973.

Lienhart, R. and Maydt, J. (2002). An extended set of Haar-like features for

rapid object detection. In Proceeding of IEEE International Conference

Image Process, Vol. 1 pp. 900–903.

Lowe, D. (1991). Fitting parameterized three-dimensional models to

images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 13(5) pp. 441–450.

Real-time hand gesture recognition for small devices Page 47

Lowe, D. (1999). Object recognition from local scale-invariant features.

Proceedings of the International Conference on Computer Vision, Vol. 2

pp. 1150–1157.

MacKay, D.J.C. (1992). The evidence framework applied to classification

networks. Neural Computation, Vol. 4(5) pp. 720-736.

Manresa, C., Varona, J., Mas, R. and Perales, F.J. (2005) Hand Tracking

and Gesture Recognition for Human-Computer Interaction. In

Electronic Letters on Computer Vision and Image Analysis, Vol. 5(3) pp.

96-104.

Marcel, S. (2000) Hand Gesture Recognition using Input Output Hidden

Markov Models, Proceeding of 4th IEEE International Conference on

Automatic Face and Gesture Recognition, pp. 456.

Milner, A.D. & Goodale, M.A. (1995) The visual brain in action. Oxford:

Oxford University Press.

Mitchell, T.M. (1997) Machine Learning. McGraw-Hill Companies, Inc.

International Edition.

Nair, V. and Clark J. (2002) Automated Visual Surveillance Using Hidden

Markov Models, Vol. 02 pp. 88.

Pavlovic, V.I., Sharma, R. and Huang, T.S. (1997) Visual Interpretation of

Hand Gestures for Human-Computer Interaction: A Review. In IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 19 pp.

677-695.

Powell, M.J.D. (1987) Radial basis functions for multivariable

interpolation: A review. In Mason, J. C. and Cox, M. G. (Eds),

Algorithms for Approximation, pp. 143-167. Oxford, Clarendon Press.

Real-time hand gesture recognition for small devices Page 48

Rehg, J. and Kanade, T. (1994) Visual tracking of high DoF articulated

structures: An application to human hand tracking. In European

Conference on Computer Vision, pp. 35–46.

Scholkopf, B. (1997) Support vector learning. Oldenbourg, München,

Germany [Note: Zugleich: Berlin, Techn. Univ., Diss., 1997], pp. 173.

Singh, R., Seth, B. and Desai, U.B. (2005) Vision based GUI for interactive

mobile robots. In proceeding of IU, pp. 254-256.

Starner, T., Weaver, J. and Pentland, A. (1998) Real-time American Sign

Language recognition using desk and wearable computer based video.

IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.

20(12) pp. 1371–1375.

Stenger, B. (2006) Template based Hand Pose recognition using multiple

cues. In Proceedings of 7th Asian Conference on Computer Vision.

Stenger, B., Mendonca, P. and Cipolla, R. (2001) Model-based 3D tracking

of an articulated hand. In IEEE Conference on Computer Vision and

Pattern Recognitio, pp. 310–315.

Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector

machine. Journal of Machine Learning Research, Vol. 1 pp. 211–244.

Tipping, M. E. and Faul, A.C. (2003) Fast marginal likelihood

maximisation for sparse Bayesian models. In Bishop, C. M. and Frey,

B. J. (Eds.), Proceedings of the Ninth International Workshop on

Artificial Intelligence and Statistics, Key West, FL, Jan 3-6.

Tipping, M.E. (2009) Sparse Bayesian Models (& the RVM) [online].

http://www.miketipping.com/index.php?page=rvm.

Real-time hand gesture recognition for small devices Page 49

Ungerleider, L.G. and Mishkin, M. (1982) Two cortical visual systems. In

D.J. Ingle, M.A. Goodale & R.J.W. Mansfield (Eds). Analysis of Visual

Behavior. Cambridge, MA: MIT Press. pp. 549-586.

Vapnik, V. (1979). Estimation of Dependences Based on Empirical Data,

Nauka, Moscow. (English translation: Springer Verlag, New York,

1982).

Vapnik, V. (1998) Stastistical learning theory. Wiley.

Vogler C. and Metaxas, D. (2001) A framework for recognizing the

simultaneous aspects of American Sign Language. Computer vision

and image understanding, Vol. 81 pp. 358–384

Wang, X., Zhang, X. and Dai, G. (2007) Tracking of Deformable Human

Hand in Real Time as Continuous Input for Gesture-based

Interaction. Proceedings of the 12th international conference on

Intelligent user interfaces, pp 235 - 242

Wang, C.C. and Wang, K.C. (2008) Hand Posture recognition using

Adaboost with SIFT for human robot interaction. Springer Berlin,

ISSN 0170-8643, Vol. 370.

Wilson, A. and Bobick, A. (1999) Parametric hidden markov models for

gesture recognition. IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 21:9 pp. 884–900.

Wilson, A. and Bobick, A. (2000) Real-time online adaptive gesture

recognition. Proceeding of international conference on pattern

recognition. Vol. 1 pp. 270–275.

Wong, S. and Cipolla, R. (2005) Real-time adaptive hand motion

recognition using a sparse Bayesian classifier. Proceedings of the IEEE

International Workshop on Human-Computer Interaction, pp. 170-179.

Real-time hand gesture recognition for small devices Page 50

Wu, Y. and Huang, T. S. (1999) Vision-Based Gesture Recognition: A

Review. In Gesture-Based Communication in Human-Computer

Interaction, Vol. 1739 pp. 103-115

Wu, Y., Lin, J. and Huang, T. (2001) Capturing natural hand articulation.

In IEEE International Conference on Computer Vision, Vol. 2 pp. 426–

432.

Yang, M. and Ahuja, N. (1998) Extraction and Classification of Visual

Motion Patterns for Hand Gesture Recognition, IEEE International

Conference on Computer Vision and Pattern Recognition, pp. 892

Zhang, H. (2005) The Optimality of Naive Bayes. Exploring conditions for

the optimality of naive Bayes. In International Journal of Pattern

Recognition and Artificial Intelligence, Vol. 19, No. 2.

Real-time hand gesture recognition for small devices Page 51

Appendix A: Code

The code for this dissertation had written using MATLAB 7.8 (R2009a)

version. Code fully utilizes the concept of object orientation methodology

as well as modular programming concept suited for MATLAB

programming. Each major function is written in separate file, so that we

could reutilize those functions easily for later use. However, as code

follows a kind of inheritance concepts, hence we could also simply call the

hand gestures recognition using single command from the MATLAB

command window. Also user could set all desire settings for hand gesture

recognition using one single command called SetUserOptions, as well as

using the SetUserOptions.m code file, hence they do not need to visit each

function to changes the default parameters value.

The code for tMHI, MGO, PCA, features extraction, Naïve Bayes classifier,

MLP, RBF and others are self-written by dissertation author. The code for

this project has been optimized as well as cross tested many-times.

MATLAB’s SVM library has been used and RVM library has been used

from the Tipping (2009).

All functions and variables name are written self-descriptive as much as

possible. However, the purpose of the input and output parameters,

variables and functions are separately written before beginning of each

function and commented in code file itself.

All used code for this dissertation except SVM and RVM (Tipping 2009)

have been listed below.

Real-time hand gesture recognition for small devices Page 52

A.1 SetUserOptions.m

% function OPTIONS = SetUserOptions(varargin)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) 2009 Copyright University of Sussex
%
% Return the user options for hand gestures experiments.
%
% Input:
% -varargin: Pairs of key and value to override the default values
%
% Output:
% -OPTIONS: user options sturcture with data, parameters, and
experiment
% models setting
%
% Dates:
% -First Published: 1-Sept-2009

function OPTIONS = SetUserOptions(varargin)

 % Confirm that supplied arguments are must be in pairs
 if rem(nargin,2)
 error('Arguments to SetUserOptions should be in pairs of
property_name and value')
 end
 noNewSetting = nargin/2; %Number of new setting

 %Options about training
 OPTIONS.ExcludeTestingDataOnPCA = 0; %PCA Training and testing
data together or separately

 %Experiment with saved data in matlab file if LoadNewData = 0 else
load
 %using user setting
 OPTIONS.UseNosOfMostVariantAxes = 5; %Number of most variant axes
to use to generate training and testing data

 OPTIONS.RepeatExperiment = 25; %Number of time to repeat the
experiment
 OPTIONS.SaveResultsToFile = 0; %Save results of experiments to
file- 0 for default console and 1 for text file
 OPTIONS.SaveResultsFile = 'ResultFiles.txt'; %Results file name-
will be only use of the SaveResultsToFile = 1
 OPTIONS.LoadNewData = 0; %0 if read from saved file else 1 to read
from video files
 OPTIONS.SaveData = 1; %Save data to file so that later data
directly could be load without image processing
 OPTIONS.TestGestures = {'Bye', 'Come', 'Down', 'Go', 'Good Luck',
'Left', 'Right', 'Up', 'Victory'}; %Gestures to test
 %OPTIONS.TestGestures = {'Left', 'Right'};
 OPTIONS.ExperimentWithRBF = 1; %Flag value to whether RBF method
should be used or not for training and testing
 OPTIONS.ExperimentWithMLP = 1; %Flag value to whether MLP method
should be used or not for training and testing

Real-time hand gesture recognition for small devices Page 53

 OPTIONS.ExperimentWithSVM = 1; %Flag value to whether SVM method
should be used or not for training and testing
 OPTIONS.ExperimentWithNB = 1; %Flag value to whether Naive Bayes
method should be used or not for training and testing
 OPTIONS.ExperimentWithRVM = 1; %Flag value to whether RVM method
should be used or not for training and testing

 %Options for root folder/location of the data
 OPTIONS.RootFolder = 'F:\Thesis\Data';
 %Options for the gestures folder for varities of data selection
 OPTIONS.Locations = {'Anita-Evening', 'Anita-Night','Rudra-
Day','Rudra-Evening','Rajendra-Evening', 'Pushmita-Night'};
%Sample/User folders
 %Number of defined gesture for supervised learning
 OPTIONS.Gestures = {'Bye', 'Come', 'Down', 'Go', 'Good Luck',
'Left', 'Right', 'Up', 'Victory'}; % type of gestures

 OPTIONS.DataFileName = 'Data_AnitaRudra'; %file name for data-
this will be saved in current location

 %Options related video processing to generate the Motion History
Images
 %and Motion Gradient Orientations
 OPTIONS.Delta = 2; %Time in Second, the duration for Motion
History Images
 OPTIONS.Frame_Buffer_Size = 4; %Buffer size to calculate the
frames difference
 OPTIONS.Use_AVIread = 1; %Option whether to read video using AVI
(1) or multimedia reader (0) library
 %Delta_Min/Max use to remove the noise from the Gradient
Orientation
 %Images
 OPTIONS.Delta_Min = 0.05; %Set the MGO to 0 if value of neighbour
is less than Delta_Min
 OPTIONS.Delta_Max = 0.5; %Set the MGO to 0 if value of neighbour
is greater than Delta_Max
 OPTIONS.Gradient_Epsilon = 0.00089; %Set the MGO to 0 if value of
X or Y gradient is less than Gradient_Epsilon

 %Options for the size of Input vector/data
 OPTIONS.MGO_Width = 200; %Resize frame's width size
 OPTIONS.MGO_Height = 200; %Resize frame's height size
 OPTIONS.MGOImages_Scale = 0.25; %Resize frame's size in scale by
maintaining aspect ratio

 %Options for research methodologies and error calculation
 OPTIONS.KFold = 5; %Number of K-Fold for generalization test- i.e.
K-Fold cross-validation

 %Options Radial Basis Function
 OPTIONS.RBF_K = 5; %Number of kernals for RBF

 %Options Multi-Layer Perceptron
 OPTIONS.Layers = [OPTIONS.UseNosOfMostVariantAxes 5 1]; %Number of
nodes per dimension- i.e. represent the numbers of layers as well as
number of nodes per layer
 OPTIONS.LearningRate = 0.05; %Learning rate
 OPTIONS.MomentumWeight = 0.005; %Momentum weight
 OPTIONS.MinimumMSE = 0.005; %Mean Square Error value to stop the
MLP training

Real-time hand gesture recognition for small devices Page 54

 OPTIONS.Max_Epochs = 400; %Number of maximum iteration allowed for
MLP training

 %RVM parameter setting
 OPTIONS.Likelihood = 'Bernoulli'; %'Gaussian'
 OPTIONS.NoiseToSignal = 0.2;

 %Options to optimize the code
 OPTIONS.One_Eighty_By_PI = 57.2958; %180/PI - use One_Eighty_By_PI
instead of 180/PI many times

 %Overriding default value by user's paramenters
 for n=1:noNewSetting

 %Reading the name and value from the paired varargin
 propertyName = varargin{(n-1)*2+1};
 newValue = varargin{(n-1)*2+2};

 switch upper(propertyName)

 case 'EXCLUDETESTINGDATAONPCA'
 OPTIONS.ExcludeTestingDataOnPCA = newValue;
 case 'USENOSOFMOSTVARIANTAXES'
 OPTIONS.UseNosOfMostVariantAxes = newValue;
 OPTIONS.Layers = [OPTIONS.UseNosOfMostVariantAxes 9
1];
 case 'REPEATEXPERIMENT'
 OPTIONS.RepeatExperiment = newValue;
 case 'SAVERESULTSTOFILE'
 OPTIONS.SaveResultsToFile = newValue;
 case 'SAVERESULTSFILE'
 OPTIONS.SaveResultsFile = newValue;
 case 'LOADNEWDATA'
 OPTIONS.LoadNewData = newValue;
 case 'SAVEDATA'
 OPTIONS.SaveData = newValue;
 case 'TESTGESTURES'
 OPTIONS.TestGestures = newValue;
 case 'EXPERIMENTWITHRBF'
 OPTIONS.ExperimentWithRBF = newValue;
 case 'EXPERIMENTWITHMLP'
 OPTIONS.ExperimentWithMLP = newValue;
 case 'EXPERIMENTWITHSVM'
 OPTIONS.ExperimentWithSVM = newValue;
 case 'EXPERIMENTWITHNB'
 OPTIONS.ExperimentWithNB = newValue;
 case 'EXPERIMENTWITHRVM'
 OPTIONS.ExperimentWithRVM = newValue;
 case 'ROOTFOLDER'
 OPTIONS.RootFolder = newValue;
 case 'LOCATIONS'
 OPTIONS.Locations = newValue;
 case 'GESTURES'
 OPTIONS.Gestures = newValue;
 case 'DATAFILENAME'
 OPTIONS.DataFileName = newValue;
 case 'DELTA'
 OPTIONS.Delta = newValue;
 case 'FRAME_BUFFER_SIZE'
 OPTIONS.Frame_Buffer_Size = newValue;

Real-time hand gesture recognition for small devices Page 55

 case 'USE_AVIREAD'
 OPTIONS.Use_AVIread = newValue;
 case 'DELTA_MIN'
 OPTIONS.Delta_Min = newValue;
 case 'DELTA_MAX'
 OPTIONS.Delta_Max = newValue;
 case 'GRADIENT_EPSILON'
 OPTIONS.Gradient_Epsilon = newValue;
 case 'MGO_WIDTH'
 OPTIONS.MGO_Width = newValue;
 case 'MGO_HEIGHT'
 OPTIONS.MGO_Height = newValue;
 case 'MGOIMAGES_SCALE'
 OPTIONS.MGOImages_Scale = newValue;
 case 'KFOLD'
 OPTIONS.KFold = newValue;
 case 'RBF_K'
 OPTIONS.RBF_K = newValue;
 case 'LAYERS'
 OPTIONS.Layers = newValue;
 case 'LEARNINGRATE'
 OPTIONS.LearningRate = newValue;
 case 'MOMENTUMWEIGHT'
 OPTIONS.MomentumWeight = newValue;
 case 'MINIMUMMSE'
 OPTIONS.MinimumMSE = newValue;
 case 'MAX_EPOCHS'
 OPTIONS.Max_Epochs = newValue;
 case 'LIKELIHOOD'
 OPTIONS.Likelihood = newValue;
 case 'NOISETOSIGNAL'
 OPTIONS.NoiseToSignal = newValue;
 case 'ONE_EIGHTY_BY_PI'
 OPTIONS.One_Eighty_By_PI = newValue;
 otherwise,
 error('Unrecognised user option: ''%s''', propertyName)
 end%END: switch upper(propertyName)
 end%END: for n=1:noNewSetting

end %END: function OPTIONS = SetUserOptions(varargin)

Real-time hand gesture recognition for small devices Page 56

A.2 DataCapture.m

% function DataCapture(parentFolder)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) 2009 Copyright University of Sussex
%
% Use to capture the video training data for the system.
%
% Input:
% -parentFolder: Parent folder to save the data
%
% Output:
% -N/A
%
% Dates:
% -First Published: 1-Sept-2009

function DataCapture(parentFolder)

 global fileIndex person

 fileIndex = 0;
 person = 'Pushmita';

 %Set parameters
 handGesture = {'Bye' 'Come' 'Down' 'Go' 'Good Luck' 'Left' 'Right'
'Up' 'Victory'}; % avialable gestures to record for for automatic data
labeling

 % Creating a video input object.
 %Input parameters are: device, device Id, format to view do
following
 %objinfo = imaqhwinfo('winvideo',1) then objinfo.SupportedFormats
 videoObjId = videoinput('winvideo',1,'YUY2_320x240'); %input
parameter should be system compatible

 % Creating a figure window and disabling all default behavior.
 hFigure = figure('Toolbar','none',...
 'Menubar', 'none',...
 'NumberTitle','Off',...
 'Name','Hand Motion- video recoding');

 % Create the image object in which we want to display the video
preview data.
 vidRes = get(videoObjId, 'VideoResolution');
 imWidth = vidRes(1);
 imHeight = vidRes(2);
 nBands = get(videoObjId, 'NumberOfBands');
 hImage = image(zeros(imHeight, imWidth, nBands));

 % Creating list box for the selection of the guesture type
recoding
 hListBox = uicontrol('Style', 'listbox',...
 'String', 'Bye|Come|Down|Go|Good
Luck|Left|Right|Up|Victory',...
 'Position', [0 0 100 50]) ;

Real-time hand gesture recognition for small devices Page 57

 % Creating list box for the selection of the guesture type
recoding
 hFileName = uicontrol('Style', 'edit',...
 'String', '',...
 'Position', [0 50 100 20]) ;

 % Creating Start Recoding push button
 uicontrol('String', 'Start Recording',...
 'Callback',
{@start_recoding,videoObjId,hImage,parentFolder,handGesture},...
 'Units','normalized',...
 'Position',[.18 0 0.15 .07]);

 % Creating Stop Recoding push button
 uicontrol('String', 'Stop Recoding',...
 'Callback', {@stop_recoding,videoObjId,hImage},...
 'Units','normalized',...
 'Position',[.34 0 0.15 .07]);

 % Creating start preview push button
 uicontrol('String', 'Start Preview',...
 'Callback', {@start_preview,videoObjId,hImage},...
 'Units','normalized',...
 'Position',[.51 0 0.15 .07]);

 % Creating stop preview push button
 uicontrol('String', 'Stop Preview',...
 'Callback', {@stop_preview,videoObjId},...
 'Units','normalized',...
 'Position',[.68 0 .15 .07]);

 % Creating close figure push button
 uicontrol('String', 'Close',...
 'Callback', {@close_program,videoObjId},...
 'Units','normalized',...
 'Position',[0.85 0 .15 .07]);

 % Specifing the size of the axes that contains the image object
 % so that it displays the image at the right resolution and
 % centers it in the figure window.
 figSize = get(hFigure,'Position');
 figWidth = figSize(3);
 figHeight = figSize(4);
 set(gca,'unit','pixels',...
 'position',[((figWidth - imWidth)/2)...
 ((figHeight - imHeight)/2)...
 imWidth imHeight]);

 % Set up the update preview window function.
 setappdata(hImage,'UpdatePreviewWindowFcn',@frameUpdate);

 setappdata(hImage,'HandleOfListBox',hListBox);

 % Make handle to file name text control available to other
function.
 setappdata(hImage,'HandleOfFileName',hFileName);

end

Real-time hand gesture recognition for small devices Page 58

function frameUpdate(obj,event,himage)
 % Example update preview window function.

 % Display image data.
 set(himage, 'CData', event.Data)

end

function start_preview(obj,event,vid,hImage)
 preview(vid, hImage);

 global fileIndex person

 fileIndex = fileIndex + 1;
 fileName = sprintf('%s%d',person,fileIndex);

 % Get handle of filename textbox control uicontrol.
 handleId = getappdata(hImage,'HandleOfFileName');
 % Get index of the selected text item on listbox
 set(handleId,'String',fileName);
end

function stop_preview(obj,event,vid)
 stoppreview(vid);
end

function start_recoding(obj,event,vid,hImage,parentFolder,handGesture)

 % Get handle of listbox control uicontrol.
 handleId = getappdata(hImage,'HandleOfListBox');
 % Get index of the selected text item on listbox
 gestureTypeId = get(handleId,'Value');

 % Get handle of filename textbox control uicontrol.
 handleId = getappdata(hImage,'HandleOfFileName');
 % Get index of the selected text item on listbox
 name = get(handleId,'String');

 gestureType = char(handGesture(gestureTypeId));
 filename =
sprintf('%s\\%s\\%s_%s.avi',parentFolder,gestureType,gestureType,name)
;

 %aviFileObject = avifile(filename, 'Colormap',gray(256));
 aviFileObject = avifile(filename);
 aviFileObject.Quality = 50;
 aviFileObject.Compression = 'None'; %'Indeo3' 'Indeo5' 'Cinepak'
'MSVC' 'None';

 vid.LoggingMode = 'disk&memory';
 vid.DiskLogger = aviFileObject;
 vid.TriggerRepeat = Inf;

 start(vid)

end

Real-time hand gesture recognition for small devices Page 59

function stop_recoding(obj,event,vid,hImage)

 stop(vid)
 aviobj = close(vid.DiskLogger);
 clear aviobj
 %close(vid.DiskLogger);

 global fileIndex person

 fileIndex = fileIndex + 1;
 fileName = sprintf('%s%d',person,fileIndex);

 % Get handle of filename textbox control uicontrol.
 handleId = getappdata(hImage,'HandleOfFileName');
 % Get index of the selected text item on listbox
 set(handleId,'String',fileName);

end

function close_program(obj,event,vid)
 stoppreview(vid);

 delete(vid)
 clear vid

 close(gcf)
end

Real-time hand gesture recognition for small devices Page 60

A.3 GestureRecognition.m

% function [success] GestureRecognition(ExecutionOption)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) 2009 University of Sussex
%
% Main entry function for gesture recognition.
% It experiment according to the setting, eg. full experiment using k-
fold or
% view of Motion gradient Orientation etc
%
% Input:
% -ExecutionOption: Option to execute the different method. 1- Test
MGO,
% 2- ExperimentGestureRecognition, 3-
ParamOptimizedGestureRecognition
%
% Output:
% -success: return 1 if program execute successfully else 0
%
% Dates:
% -First Published: 1-Sept-2009

function [success] = GestureRecognition(ExecutionOption)
 %Default value for success is 0
 success = 0;
 warning('off','stats:kmeans:EmptyCluster'); %Switch off off the
EmptyCluster warning

 %Blocks of code according to options
 if(ExecutionOption == 1)
 OPTIONS = SetUserOptions(); %Get user options setting
 TestMGO('N:\Thesis\Data\Rudra-Day\Bye', OPTIONS);

 elseif (ExecutionOption == 2) %ExperimentGestureRecognition

 OPTIONS = SetUserOptions('LoadNewData', 1 ...
 , 'DataFileName',
'Data_AnitaRudraPushmitaRajendra' ...
 , 'RootFolder', 'N:\Thesis\Data' ...
 , 'Locations', {'Anita-Evening',
'Anita-Night','Rudra-Day','Rudra-Evening','Rajendra-Evening',
'Pushmita-Night'} ...
 , 'Gestures', {'Bye', 'Come',
'Down', 'Go', 'Good Luck', 'Left', 'Right', 'Up', 'Victory'} ...
 , 'TestGestures', {'Bye', 'Come',
'Down', 'Go', 'Good Luck', 'Left', 'Right', 'Up', 'Victory'} ...
 , 'SaveResultsToFile', 1 ...
 , 'SaveResultsFile', 'Result.txt'
...
 , 'ExperimentWithRBF', 1 ...
 , 'ExperimentWithMLP', 1 ...
 , 'ExperimentWithSVM', 1 ...
 , 'ExperimentWithNB', 1 ...
 , 'ExperimentWithRVM', 1 ...

Real-time hand gesture recognition for small devices Page 61

 , 'RepeatExperiment', 2 ...
 , 'UseNosOfMostVariantAxes', 5 ...
); %Get user options setting

 ExperimentGestureRecognition(OPTIONS);

 else %ParamOptimizedGestureRecognition

 UserMessage = 1;
 K_Start = 5;
 K_End = 6;

 fid = fopen('Rudra_RF.txt','wt'); % file to same the
optimization parameters

 OPTIONS = SetUserOptions('LoadNewData', 0 ...
 , 'DataFileName', '' ...
 , 'RootFolder', 'N:\Thesis\Data' ...
 , 'Locations', {'Rudra-Day','Rudra-
Evening'} ...
 , 'Gestures', {'Left', 'Right'} ...
 , 'TestGestures', {'Left', 'Right'}
...
 , 'SaveResultsToFile', 0 ...
 , 'SaveResultsFile', '' ...
 , 'ExperimentWithRBF', 1 ...
 , 'ExperimentWithMLP', 1 ...
 , 'ExperimentWithSVM', 1 ...
 , 'ExperimentWithNB', 1 ...
 , 'ExperimentWithRVM', 1 ...
 , 'RepeatExperiment', 25 ...
 , 'UseNosOfMostVariantAxes', -1 ...
); %Get user options setting
 %, 'ExcludeTestingDataOnPCA',1 ...

 if(UserMessage)
 fprintf(1,'\n Data Loading ... ');
 end
 [orginalData, group] = LoadData(OPTIONS);
 if(UserMessage)
 fprintf(1,'Finished. ');
 end

 noCols = size(orginalData,2);
 if(UserMessage)
 fprintf(1,'\n PCA ... ');
 end
 V = GetPrePCA_V_Matrix(orginalData);
 if(UserMessage)
 fprintf(1,'Finished. ');
 end

 for k=K_Start:K_End

 if(UserMessage)
 fprintf(1,'\n k = %d ... ',k);

Real-time hand gesture recognition for small devices Page 62

 end

 %DBFile = sprintf('Data_%d',k);
 %OPTIONS.DataFileName = DBFile;
 OPTIONS.UseNosOfMostVariantAxes = k;
 OPTIONS.Layers = [OPTIONS.UseNosOfMostVariantAxes 9 1];

 data = orginalData * V(:,noCols-
OPTIONS.UseNosOfMostVariantAxes+1:noCols);

 ParamOptimizedGestureRecognition(OPTIONS, fid,data,group)

 %OPTIONS.LoadNewData = 0;
 end %END: for k=5:30
 fclose(fid);
 if(UserMessage)
 fprintf(1,'\n\n Finished.');
 end

 end

 warning('on','stats:kmeans:EmptyCluster'); %Switch on the
EmptyCluster warning back

 success = 1; % Return true when the function successfully executed

end %END: function [success] = GestureRecognition(ExecutionOption)

Real-time hand gesture recognition for small devices Page 63

A.4 ExperimentGestureRecognition.m

% function ExperimentGestureRecognition(OPTIONS)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) 2009 University of Sussex
%
% Experiment the gesture recognition using k-fold method for different
% methodologies and data according to user setting, have a look at
% SetUserOptions.m
%
% Input:
% -OPTIONS - Options for the model to test
%
% Output:
% -Empty

function ExperimentGestureRecognition(OPTIONS)

 %Check if need to save the result on the file
 if(OPTIONS.SaveResultsToFile)
 %Open the new file to save the experiments results
 %Format
 %Gesture, RBF, SVM, MLP, NB, RVM
 fid = fopen(OPTIONS.SaveResultsFile,'wt');

 fprintf(fid,'\t');
 if(OPTIONS.ExperimentWithRBF)
 fprintf(fid,'\tRBF');
 end
 if(OPTIONS.ExperimentWithSVM)
 fprintf(fid,'\tSVM');
 end
 if(OPTIONS.ExperimentWithMLP)
 fprintf(fid,'\tMLP');
 end
 if(OPTIONS.ExperimentWithNB)
 fprintf(fid,'\tNB');
 end
 if(OPTIONS.ExperimentWithRVM)
 fprintf(fid,'\tRVM');
 end

 fprintf(fid,'\n');
 end

 %START: Loop experiment for each gesture
 for iGesture=1:length(OPTIONS.TestGestures)
 %Load the data for experiment
 fprintf(1,'\nExperiment %s: load data. ',
OPTIONS.TestGestures{iGesture});
 [Model.Data.Train.Input Model.Data.Train.Group] =
GetData(OPTIONS.TestGestures{iGesture},OPTIONS);
 OPTIONS.LoadNewData = 0;

 if(OPTIONS.SaveResultsToFile)
 fprintf(fid,'%s\t',OPTIONS.TestGestures{iGesture});

Real-time hand gesture recognition for small devices Page 64

 end

 %Experiment the data using RBF and print the error
 if(OPTIONS.ExperimentWithRBF)
 fprintf(1,' RBF.');
 errorRate = 0;
 for i=1:OPTIONS.RepeatExperiment
 errorRate = errorRate + ExperimentWithRBF(Model,
OPTIONS);
 end
 errorRate = errorRate/OPTIONS.RepeatExperiment;

 if(OPTIONS.SaveResultsToFile)
 fprintf(fid,'\t%3.2f',errorRate);
 else
 fprintf(1,' error=%3.2f ',errorRate);
 end
 end

 %Experiment the data using SVM and print the error
 if(OPTIONS.ExperimentWithSVM)
 fprintf(1,' SVM.');
 errorRate = 0;
 for i=1:OPTIONS.RepeatExperiment
 errorRate = errorRate + ExperimentWithSVM(Model,
OPTIONS);
 end
 errorRate = errorRate/OPTIONS.RepeatExperiment;

 if(OPTIONS.SaveResultsToFile)
 fprintf(fid,'\t%3.2f',errorRate);
 else
 fprintf(1,' error.=%3.2f ',errorRate);
 end
 end

 %Experiment the data using MLP and print the error
 if(OPTIONS.ExperimentWithMLP)
 fprintf(1,' MLP.');
 errorRate = 0;
 for i=1:OPTIONS.RepeatExperiment
 errorRate = errorRate + ExperimentWithMLP(Model,
OPTIONS);
 end
 errorRate = errorRate/OPTIONS.RepeatExperiment;

 if(OPTIONS.SaveResultsToFile)
 fprintf(fid,'\t%3.2f',errorRate);
 else
 fprintf(1,' error=%3.2f ',errorRate);
 end
 end

 %Experiment the data using Naive Bayes and print the error
 if(OPTIONS.ExperimentWithNB)
 fprintf(1,' NB.');
 errorRate = 0;
 for i=1:OPTIONS.RepeatExperiment
 errorRate = errorRate +
ExperimentWithNaiveBayes(Model, OPTIONS);

Real-time hand gesture recognition for small devices Page 65

 end
 errorRate = errorRate/OPTIONS.RepeatExperiment;

 if(OPTIONS.SaveResultsToFile)
 fprintf(fid,'\t%3.2f',errorRate);
 else
 fprintf(1,' error=%3.2f ',errorRate);
 end
 end

 %Experiment the data using sparse Bayesian network and print
the error
 if(OPTIONS.ExperimentWithRVM)
 fprintf(1,' RVM.');
 errorRate = 0;
 for i=1:OPTIONS.RepeatExperiment
 errorRate = errorRate + ExperimentWithRVM(Model,
OPTIONS);
 end
 errorRate = errorRate/OPTIONS.RepeatExperiment;

 if(OPTIONS.SaveResultsToFile)
 fprintf(fid,'\t%3.2f',errorRate);
 else
 fprintf(1,' error=%3.2f ',errorRate);
 end
 end

 if(OPTIONS.SaveResultsToFile)
 fprintf(fid,'\n'); %Close the file handle
 end
 end
 %END: Loop experiment for each gesture

 if(OPTIONS.SaveResultsToFile)
 %Close the file handle and save the sive
 fclose(fid);
 end

end %END: ExperimentGestureRecognition(OPTIONS)

Real-time hand gesture recognition for small devices Page 66

A.5 ParamOptimizedGestureRecognition.m

% function ParamOptimizedGestureRecognition(OPTIONS, fid,data,group)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) 2009 University of Sussex
%
% Experiment for parameter optimization of gesture recognition models
according to user setting, have a look at
% SetUserOptions.m for detail
%
% Input:
% -OPTIONS - Options for the model to test
% -fid - file handle to write the results
% -data - Data input for training and testing
% -group - Label of <data> or class of <data>
%
% Output:
% -Empty: However either results are use to save in file or print to
% default console application based on the OPTIONS setting

function ParamOptimizedGestureRecognition(OPTIONS, fid,data,group)

 results = zeros(length(OPTIONS.TestGestures),30);
 %START: Loop experiment for each gesture
 for iGesture=1:length(OPTIONS.TestGestures)
 %Load the data for experiment
 [Model.Data.Train.Input Model.Data.Train.Group] =
GetTrainingData(OPTIONS.TestGestures{iGesture}, OPTIONS, data, group);

 %Experiment the data using RBF and print the error
 errorRate = 0;
 for i=1:OPTIONS.RepeatExperiment
 errorRate = errorRate + ExperimentWithRBF(Model, OPTIONS);
 end
 errorRate = errorRate/OPTIONS.RepeatExperiment;
 results(iGesture,1) = errorRate;

 %Experiment the data using SVM and print the error
 errorRate = 0;
 for i=1:OPTIONS.RepeatExperiment
 errorRate = errorRate + ExperimentWithSVM(Model, OPTIONS);
 end
 errorRate = errorRate/OPTIONS.RepeatExperiment;
 results(iGesture,2) = errorRate;

 %Experiment the data using MLP and print the error
 errorRate = 0;
 for i=1:OPTIONS.RepeatExperiment
 errorRate = errorRate + ExperimentWithMLP(Model, OPTIONS);
 end
 errorRate = errorRate/OPTIONS.RepeatExperiment;
 results(iGesture,3) = errorRate;

Real-time hand gesture recognition for small devices Page 67

 %Experiment the data using Naive Bayes and print the error
 errorRate = 0;
 for i=1:OPTIONS.RepeatExperiment
 errorRate = errorRate + ExperimentWithNaiveBayes(Model,
OPTIONS);
 end
 errorRate = errorRate/OPTIONS.RepeatExperiment;
 results(iGesture,4) = errorRate;

 %Experiment the data using RVM and print the error
 errorRate = 0;
 for i=1:OPTIONS.RepeatExperiment
 errorRate = errorRate + ExperimentWithRVM(Model, OPTIONS);
 end
 errorRate = errorRate/OPTIONS.RepeatExperiment;
 results(iGesture,5) = errorRate;

 %Experiment the data using RBF and print the error
 for K=3:30

 OPTIONS.RBF_K = K; %Number of kernal for RBF

 errorRate = 0;
 for i=1:OPTIONS.RepeatExperiment
 errorRate = errorRate + ExperimentWithRBF(Model,
OPTIONS);
 end
 errorRate = errorRate/OPTIONS.RepeatExperiment;
 results(iGesture,K) = errorRate;
 end

 %Experiment the data using MLP and print the error
 for iHiddenLayer=3:30

 OPTIONS.Layers = [OPTIONS.UseNosOfMostVariantAxes
iHiddenLayer 1];

 errorRate = 0;
 for i=1:OPTIONS.RepeatExperiment
 errorRate = errorRate + ExperimentWithMLP(Model,
OPTIONS);
 end
 errorRate = errorRate/OPTIONS.RepeatExperiment;
 results(iGesture,iHiddenLayer) = errorRate;
 end

 end
 %END: Loop experiment for each gesture

 totalErrorRate = sum(results);
 totalErrorRate = totalErrorRate ./length(OPTIONS.TestGestures);

 fprintf(fid,'%d',OPTIONS.UseNosOfMostVariantAxes);
 for i=1:length(totalErrorRate)
 fprintf(fid,'\t%3.2f',totalErrorRate(i));
 end
 fprintf(fid,'\n');

end %END of function

Real-time hand gesture recognition for small devices Page 68

A.6 ExperimentWithNaiveBayes.m

% function [cp] = ExperimentWithNaiveBayes(Model, OPTIONS)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) 2009 University of Sussex
%
% Train and test the given MGO images using Gaussian Naive Bayes and
% return the error rate.
%
% Input:
% -Model: Model which contains the data and other training info
%
% -OPTIONS: User options structure with Naive Bayes training
parameters info
%
% Output:
% -ErrorRate: Error rate of K-Fold cross-validation
%
% Dates:
% -First Published: 1-Sept-2009

function [ErrorRate] = ExperimentWithNaiveBayes(Model, OPTIONS)

 %Dividing data on K-Clusters for K-Fold training
 indicesKFold =
crossvalind('Kfold',Model.Data.Train.Group,OPTIONS.KFold);
 cp = classperf(Model.Data.Train.Group); %Initialize classperf
structure for error calculation

 %START: Loop for KFold test
 for i=1:OPTIONS.KFold
 test = (indicesKFold == i); train = ~test;
 if(OPTIONS.ExcludeTestingDataOnPCA)
 [trainingInput testingInput] =
PCA_TestSeparate(Model.Data.Train.Input(train,:),Model.Data.Train.Inpu
t(test,:),OPTIONS.UseNosOfMostVariantAxes);
 else
 trainingInput = Model.Data.Train.Input(train,:);
 testingInput = Model.Data.Train.Input(test,:);
 end
 %Train Input using Naive Bayes
 GNBModel = trainGaussianNaiveBayes(trainingInput,
Model.Data.Train.Group(train,:));
 %Predict Output using Naive Bayes Model
 classes = testGaussianNaiveBayes(GNBModel, testingInput);

 classperf(cp,classes,test); %Update the error rate using new
prediction

 end
 ErrorRate = cp.ErrorRate;

end

% function [GNBModel] = GaussianNaiveBayes(inputs,targets)

Real-time hand gesture recognition for small devices Page 69

%
% Guassian Naive Bayes training routine.
%
% Input:
% -inputs: Inputs data for training
%
% -targets: Targets class
%
% Output:
% -GNBModel: Gaussian Naive Bayes Model which contains the prior
% probabilities and means and standerd deviations per group per
features

function [GNBModel] = trainGaussianNaiveBayes(inputs, targets)

 UniqueClasses = sort(unique(targets)); %Find all unique classes
 NumberOfClasses = length(UniqueClasses); %Number of unique classes
 [NumberOfInputs NumberOfFeatures] = size(inputs); %Finding number
features and training sample size

 Means = zeros(NumberOfClasses,NumberOfFeatures); %Initialize Means
to hold mean values for unique combination of classes and features
 StandardDeviation = zeros(NumberOfClasses,NumberOfFeatures);
%Initialize StandardDeviation to hold standard deviation values for
unique combination of classes and features
 PriorProbabilities = ones(NumberOfClasses,1); %Initialize
PriorProbabilities to hold Prior probability of each class
 %We assume that prior probabilities for each class is equal
 PriorProbabilities = PriorProbabilities .* (1/NumberOfClasses);
 %Or
 %PriorProbabilities = Number of each class/NumberOfInputs);

 %START: Loop through all classes
 for i=1:1:NumberOfClasses
 selectedClass = (targets == UniqueClasses(i)); %Selecting a
class at a time
 Means(i,:) = mean(inputs(selectedClass,:)); %Mean for selected
class, each feature wise
 StandardDeviation(i,:) = std(inputs(selectedClass,:));
%Standard Deviation for selected class, each feature wise
 %PriorProbabilities(i) = size(inputs(selectedClass,:),1);
 end
 %END: Loop through all classes
 %PriorProbabilities = PriorProbabilities ./size(inputs,1);

 %Zero standard deviation yield problem with logarithmic function
 %so change that to some default value
 stdZeros = (StandardDeviation == 0);
 StandardDeviation(stdZeros) = 0.15;

 %The the training values to model and return, which will be use
for
 %prediction
 GNBModel.UniqueClasses = UniqueClasses;
 GNBModel.NumberOfClasses = NumberOfClasses;
 GNBModel.NumberOfFeatures = NumberOfFeatures;
 GNBModel.PriorProbabilities = PriorProbabilities;
 GNBModel.Means = Means;
 GNBModel.StandardDeviation = StandardDeviation;

Real-time hand gesture recognition for small devices Page 70

end

% function [results] = testGaussianNaiveBayes(GNBModel, inputs)
%
% Predict the output using trained Guassian Naive Bayes Model
%
% Input:
% -GNBModel: Gaussian Naive Bayes Trained model
%
% -inputs: Inputs data for testing
%
% Output:
% -Results: Prediction classes of the inputs

function [results] = testGaussianNaiveBayes(GNBModel, inputs)
 results = [];
 %START: Loop through all inputs
 for iInput=1:size(inputs)
 %Initialize as well as keep the logarithmic prior
probabilities
 %values for all classes
 probabilities = log(GNBModel.PriorProbabilities);
 %START: Loop through all classes
 for iClass=1:GNBModel.NumberOfClasses
 dblTemp = 0; %Hold the logarithmic sum of Gaussian
probability of class and feature
 %START: Loop through all features
 for iFeature=1:1:GNBModel.NumberOfFeatures
 %Logarithmic Gaussain Navie Bayes Formula for class
discrimination
 %if(DontAdd_2Pi)
 dblTemp = dblTemp - (inputs(iInput,iFeature)-
GNBModel.Means(iClass,iFeature))^2/(2*GNBModel.StandardDeviation(iClas
s,iFeature)^2) - log(GNBModel.StandardDeviation(iClass,iFeature));
 %else
 %dblTemp=dblTemp-(inputs(iInput,iFeature)-
GNBModel.Means(iClass,iFeature))^2/(2*GNBModel.StandardDeviation(iClas
s,iFeature)^2) -
log(sqrt(2*pi)*GNBModel.StandardDeviation(iClass,iFeature));
 %end
 end
 %END: Loop through all features
 probabilities(iClass) = probabilities(iClass) + dblTemp;
 end
 %END: Loop through all classes
 [value index] = max(probabilities); %Select the class with max
probabilities
 results = [results ; GNBModel.UniqueClasses(index)]; %Add up
the prediction output
 end
 %END: Loop through all inputs
end

Real-time hand gesture recognition for small devices Page 71

A.7 ExperimentWithMLP.m

% function [cp] = ExperimentWithMLP(Model, OPTIONS)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) 2009 University of Sussex
%
% Train and test the given MGO images using Multi-Layer Perceptron and
% return the error rate of K-fold cross-validation.
%
% Input:
% -Model: Model which contains the data and other training info
%
% -OPTIONS: User options structure with MLP training parameters
info
%
% Output:
% -ErrorRate: Error rate of K-Fold test
%
% Dates:
% -First Published: 1-Sept-2009

function [ErrorRate] = ExperimentWithMLP(Model, OPTIONS)

 %Dividing data on K-Clusters for K-Fold training
 indicesKFold =
crossvalind('Kfold',Model.Data.Train.Group,OPTIONS.KFold);
 cp = classperf(Model.Data.Train.Group); %Initialize classperf
structure for error calculation

 %START: Loop for KFold test
 for i=1:OPTIONS.KFold
 test = (indicesKFold == i); train = ~test;
 if(OPTIONS.ExcludeTestingDataOnPCA)
 [trainingInput testingInput] =
PCA_TestSeparate(Model.Data.Train.Input(train,:),Model.Data.Train.Inpu
t(test,:),OPTIONS.UseNosOfMostVariantAxes);
 else
 trainingInput = Model.Data.Train.Input(train,:);
 testingInput = Model.Data.Train.Input(test,:);
 end
 %Train Input using MLP
 MLPModel =
trainMLP(trainingInput,Model.Data.Train.Group(train,:),OPTIONS.Learnin
gRate,OPTIONS.MomentumWeight,OPTIONS.MinimumMSE,OPTIONS.Layers,OPTIONS
.Max_Epochs);
 %Predict Output using MLP Model
 classes = classifyMLP(testingInput, OPTIONS.Layers,
MLPModel.weights);
 classperf(cp,classes,test); %Update the error rate using new
prediction

 end
 %END: Loop for KFold test
 ErrorRate = cp.ErrorRate;

end

Real-time hand gesture recognition for small devices Page 72

% function MLPModel =
%
trainMLP(inputs,targets,learningRate,momentumWeight,minimumMSE,layers,
% maxEpochs)
%
% MLP training routine
%
% Input:
% -inputs: Inputs data for training
%
% -targets: Targets class
%
% -learningRate: Learning rate for weights update
%
% -momentumWeight: Momentum weight to speed up training
%
% -minimumMSE: Mean Square Error to stop the training
%
% -layers: MLP structure which includes number of layers and
numbers of
% node. Eg. 8 10 1, means 8 input nodes, 10 hidden nodes and 1
output
% nodes
%
% -maxEpochs: Maximum epochs allowed for MLP training
%
% Output:
% -MLPModel: MLP Model which contains the weights, training Mean
Square
% Erro and Number of epoch used for training
%
% References: The MLP training code used form the Rudra PK Poudel,
Neural
% Network Assignment II

function MLPModel =
trainMLP(inputs,targets,learningRate,momentumWeight,minimumMSE,layers,
maxEpochs)

[trainingDataCount,inputNodesCount] = size(inputs);
[targetDataCount,targetNodesCount] = size(targets);

if trainingDataCount ~= targetDataCount

error('BackpropagationTraining:TrainingAndTargetDataLengthMismatch',
'The number of input vectors and desired ouput vectors do not match');
end

if length(layers) < 3
 error('BackpropagationTraining:InvalidNetworkStructure','The
network must have at least 3 layers');
end

if inputNodesCount ~= layers(1)
 msg = sprintf('Dimensions of input nodes (%d) does not match with
numbers of input layer (%d).',inputNodesCount,layers(1));
 error('BackpropagationTraining:InvalidInputLayerSize', msg);
end

Real-time hand gesture recognition for small devices Page 73

if targetNodesCount ~= layers(end)
 msg = sprintf('Dimensions of output nodes (%d) does not match with
numbers of output layer (%d)',targetNodesCount,layers(end));
 error('BackpropagationTraining:InvalidOutLayerSize', msg);
end

leayersLength = length(layers);

%Initialize the weights matrix for MLP including bias nodes for all
layers
weights = cell(leayersLength-1,1);
for i=1:leayersLength-2
 weights{i} = [-1 + 2 .* rand(layers(i+1),layers(i)+1);
zeros(1,layers(i)+1)];
end
weights{end} = -2 + 2 .* rand(layers(end),layers(end-1)+1);

MSE = Inf; %Initialize default MSE to maximum
epochs = 0;

activation = cell(leayersLength,1);
activation{1} = [inputs ones(trainingDataCount,1)]; % activation{1} is
the input + 1 for the bias node activation
 % activation{1}
remains the same throught the computation
for i=2:leayersLength-1
 activation{i} = ones(trainingDataCount,layers(i)+1); % inner
layers include a bias node (trainingDataCount-by-Nodes+1)
end
activation{end} = ones(trainingDataCount,layers(end)); % no bias node
at output layer

net = cell(leayersLength-1,1); % one net matrix for each layer
exclusive input
for i=1:leayersLength-2;
 net{i} = ones(trainingDataCount,layers(i+1)+1); % affix bias node
end
net{end} = ones(trainingDataCount,layers(end));

previousDeltaW = cell(leayersLength-1,1);
sumDeltaW = cell(leayersLength-1,1);
for i=1:leayersLength-1
 previousDeltaW{i} = zeros(size(weights{i})); % previousDeltaW
starts at 0
 sumDeltaW{i} = zeros(size(weights{i}));
end

% lowestsse = 999999;
% bestweights = weights;
while MSE > minimumMSE && epochs < maxEpochs

 for i=1:leayersLength-1
 net{i} = activation{i} * weights{i}'; % compute inputs to
current layer

 if i < leayersLength-1 % inner layers
 activation{i+1} = [1./(1+exp(-net{i}(:,1:end-1)))
ones(trainingDataCount,1)]; % for sigmoid

Real-time hand gesture recognition for small devices Page 74

 %activation{i+1} = [(net{i}(:,1:end-1))
ones(trainingDataCount,1)]; %without sigmoid i.e for linear activation
function
 else % output layers
 activation{i+1} = 1 ./ (1 + exp(-net{i}));
 for iOutput=1:length(activation{i+1})
 if(activation{i+1}(iOutput)>=0.5)
 activation{i+1}(iOutput)=1;
 else
 activation{i+1}(iOutput)=0;
 end
 end
 end
 end

 % calculate sum squared error of all samples
 err = (targets-activation{end}); % save this for later
 sse = sum(sum(err.^2)); % sum of the error for all samples, and
all nodes
% if(lowestsse>sse)
% lowestsse = sse;
% bestweights = weights;
% end

 %delta = err .* activation{end} .* (1 - activation{end});
 delta = err;
 for i=leayersLength-1:-1:1
 sumDeltaW{i} = learningRate * delta' * activation{i};
 if i > 1
 delta = activation{i} .* (1-activation{i}) .*
(delta*weights{i});
 %delta = (delta*weights{i}); % when there is no
activation
 %function
 end
 end

 % update the prev_w, weight matrices, epoch count and MSE
 for i=1:leayersLength-1
 previousDeltaW{i} = (sumDeltaW{i} ./ trainingDataCount) +
(momentumWeight * previousDeltaW{i});
 weights{i} = weights{i} + previousDeltaW{i};
 end
 epochs = epochs + 1;
 MSE = sse/(trainingDataCount*targetNodesCount);
 %MSEPerEpoch(epochs) = MSE;

end

% %printing error
% axis ([0 length(MSEPerEpoch) 0 1]);
% x = 1:1:length(MSEPerEpoch);
% plot(x,MSEPerEpoch);
% s=input('Press enter to continue, enter 0 to stop \n');

% return the trained network
MLPModel.weights = weights;
% MLPModel.bestweights = bestweights;
MLPModel.epochs = epochs;
MLPModel.MSE = MSE;

Real-time hand gesture recognition for small devices Page 75

end

% function Results = classifyMLP(inputs,layers, weights)
%
% Predict the output using trained MLP Model
%
% Input:
% -inputs: Inputs data for training
%
% -layers: MLP structure which includes number of layers and
numbers of
% node. Eg. 8 10 1, means 8 input nodes, 10 hidden nodes and 1
output
% nodes. It should be same as used in training
%
% -weights: MLP trained weights
%
% Output:
% -Results: Prediction of the inputs

function Results = classifyMLP(inputs,layers, weights)

[trainingDataCount,inputNodesCount] = size(inputs);

leayersLength = length(layers);

activation = cell(leayersLength,1);
activation{1} = [inputs ones(trainingDataCount,1)]; % activation{1} is
the input + 1 for the bias node activation
 % activation{1}
remains the same throught the computation
for i=2:leayersLength-1
 activation{i} = ones(trainingDataCount,layers(i)+1); % inner
layers include a bias node (trainingDataCount-by-Nodes+1)
end
activation{end} = ones(trainingDataCount,layers(end)); % no bias node
at output layer

net = cell(leayersLength-1,1); % one net matrix for each layer
exclusive input
for i=1:leayersLength-2;
 net{i} = ones(trainingDataCount,layers(i+1)+1); % affix bias node
end
net{end} = ones(trainingDataCount,layers(end));

for i=1:leayersLength-1
 net{i} = activation{i} * weights{i}'; % compute inputs to current
layer

 if i < leayersLength-1 % inner layers
 activation{i+1} = [1./(1+exp(-net{i}(:,1:end-1)))
ones(trainingDataCount,1)]; % for sigmoid
 %activation{i+1} = [(net{i}(:,1:end-1))
ones(trainingDataCount,1)]; %without sigmoid i.e for linear activation
function
 else % output layers
 activation{i+1} = 1 ./ (1 + exp(-net{i}));

Real-time hand gesture recognition for small devices Page 76

 Results = zeros(length(activation{i+1}),1);
 for iOutput=1:length(activation{i+1})
 if(activation{i+1}(iOutput)>=0.5)
 Results(iOutput)=1;
 else
 Results(iOutput)=0;
 end
 end
 end
end

%Results = Results';
end

Real-time hand gesture recognition for small devices Page 77

A.8 ExperimentWithRBF.m

% function [cp] = ExperimentWithRBF(Model, OPTIONS)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) 2009 University of Sussex
%
% Train and test the given MGO images using Radial Basis Function and
% return the rate using k-fold cross validation.
%
% Input:
% -Model: Model which contains the data and other training info
%
% -OPTIONS: User options structure with RBF training parameters
info
%
% Output:
% -ErrorRate: Error rate of K-Fold test
%
% Dates:
% -First Published: 1-Sept-2009

function [ErrorRate] = ExperimentWithRBF(Model, OPTIONS)

 %Dividing data on K-Clusters for K-Fold training
 indicesKFold =
crossvalind('Kfold',Model.Data.Train.Group,OPTIONS.KFold);
 cp = classperf(Model.Data.Train.Group); %Initialize classperf
structure for error calculation

 %START: Loop for KFold test
 for i=1:OPTIONS.KFold
 test = (indicesKFold == i); train = ~test;
 if(OPTIONS.ExcludeTestingDataOnPCA)
 [trainingInput testingInput] =
PCA_TestSeparate(Model.Data.Train.Input(train,:),Model.Data.Train.Inpu
t(test,:),OPTIONS.UseNosOfMostVariantAxes);
 else
 trainingInput = Model.Data.Train.Input(train,:);
 testingInput = Model.Data.Train.Input(test,:);
 end
 %Train Input using RBF
 RBFModel =
trainRBF(trainingInput,Model.Data.Train.Group(train,:),OPTIONS.RBF_K);
 %Predict Output using RBF Model
 classes = classifyRBF(testingInput,RBFModel.C,
RBFModel.weights, RBFModel.sigmas);
 classperf(cp,classes,test); %Update the error rate using new
prediction

 end
 %END: Loop for KFold test

 ErrorRate = cp.ErrorRate;

end

Real-time hand gesture recognition for small devices Page 78

% function RBFModel = trainRBF(inputs,targets, K)
%
% RBF training routine
%
% Input:
% -inputs: Inputs data for training
%
% -targets: Targets class
%
% -K: Number of kernels
%
% Output:
% -RBFModel: RBF Model which contains the weights, centers (C),
sigma and
% K
%
% References: The RBF training code used form the Rudra PK Poudel,
Neural
% Network Assignment II

function RBFModel = trainRBF(inputs,targets, K)
 %Calculating Centroids for K-means
 exit = 0;
 while (exit~=1)
 AllowExit = 1;
 [IDX, C, sumd, D] = kmeans(inputs, K, 'emptyaction',
'singleton','replicates', 50);
 for i=1:size(C,1)
 for j=1:size(C,2)
 if(C(i,j)== 0)
 AllowExit = 0;
 end
 end
 end
 if (AllowExit == 1)
 exit = 1;
 end
 end

 %Calculating the value of the sigma using distance between kernels
 sigmas = zeros(1,size(C,1));
 for i=1:size(C,1)
 max_distance = 0;
 for j=1:size(C,1)
 if(i~=j)
 distance = norm(C(i,:)-C(j,:));
 max_distance = max_distance + (distance^2);
 if(distance>max_distance)
 max_distance = distance;
 end
 end
 end
 sigmas(i) = max_distance;
 end

 fai = zeros(size(inputs,1),K);
 % Calculate output matrix (fae)
 for i=1:size(inputs,1)
 for j=1:K
 fai(i,j) = nodeActivation(inputs(i,:), C(j,:), sigmas(j),
1);

Real-time hand gesture recognition for small devices Page 79

 end
 end
 fai = [fai ones(size(fai,1),1)]; %adding bias
 %plot(1:size(fai,2),fai)

 try
 RBFModel.weights = pinv(fai) * targets;
 RBFModel.C = C;
 RBFModel.sigmas = sigmas;
 catch PINV_ERROR
 RBFModel = trainRBF(inputs,targets, K);
 end
end

% function output = nodeActivation (input, centre, sigma, option)
%
% Give the kernel output
%
% Input:
% -inputs: A Input data
%
% -centre: A kernel
%
% -sigma: Value of sigma
%
% -option: Kernel function to be used
%
% Output:
% -output: Given Kernel output for the given one point/input

function output = nodeActivation (input, centre, sigma, option)
 r = norm(input - centre);
 if (option == 1) %guassian
 output = exp(- (r^2)/(2*(sigma^2)));
 elseif (option == 2) %Multiquadric
 output = sqrt((r^2) + 0.3);
 elseif (option == 3) %Inverse multiquadrics
 output = 1 / (sqrt((r^2) + 0.3));
 elseif (option == 4) %
 output = exp(- (r^2)) + 0.1;
 elseif (option == 5) %
 output = r;
 end

end

% function results = classifyRBF(inputs,C, weights, sigmas)
%
% Predict the output using trained RBF Model
%
% Input:
% -inputs: Inputs data for training
%
% -C: Selected kernels/centers for RBF model
%
% -weights: RBF trained weights
%
% -sigmas: Value of sigma for each kernel
%
% Output:

Real-time hand gesture recognition for small devices Page 80

% -Results: Prediction of the inputs

function [results] = classifyRBF(inputs,C, weights, sigmas)
 results = zeros(size(inputs,1),1);
 K = size(C,1);
 for i=1:size(inputs,1)
 nodeOutput = weights(K+1); %bias
 %nodeOutput = 0;
 for j=1:K
 nodeOutput = nodeOutput + (weights(j) *
nodeActivation(inputs(i,:), C(j,:), sigmas(j), 1));
 end
 if (nodeOutput>0.5)
 results(i) = 1;
 else
 results(i) = 0;
 end

 end

end

Real-time hand gesture recognition for small devices Page 81

A.9 ExperimentWithRVM

% function [ErrorRate]= ExperimentWithRVM(Model, OPTIONS)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) 2009 University of Sussex
%
% Train and test the given MGO images using sparse Bayesian classifier
and
% return the error rate using k-fold cross validation.
%
% This method use the library developed by Tipping (2009)
%
% Input:
% -Model: Model which contains the data and other training info
%
% -OPTIONS: User options structure with sparse Bayesian classifier
training parameters info
%
% Output:
% -ErrorRate: Error rate of K-Fold test
%
% Dates:
% -First Published: 1-Sept-2009

% SPARSEBAYESDEMO Simple demonstration of the SPARSEBAYES algorithm
%
% SPARSEBAYESDEMO(LIKELIHOOD, DIMENSION, NOISETOSIGNAL)
%
% OUTPUT ARGUMENTS: None
%
% INPUT ARGUMENTS:
%
% LIKELIHOOD Text string, one of 'Gaussian' or 'Bernoulli'
% DIMENSION Integer, 1 or 2
% NOISETOSIGNAL An optional positive number to specify the
% noise-to-signal (standard deviation) fraction.
% (Optional: default value is 0.2).
%
% EXAMPLES:
%
% SPARSEBAYESDEMO("Bernoulli",2)
% SPARSEBAYESDEMO("Gaussian",1,0.5)
%
% NOTES:
%
% This program offers a simple demonstration of how to use the
% SPARSEBAYES (V2) Matlab software.
%
% Synthetic data is generated from an underlying linear model based
% on a set of "Gaussian" basis functions, with the generator being
% "sparse" such that 10% of potential weights are non-zero. Data may
be
% generated in an input space of one or two dimensions.
%
% This generator is then used either as the basis for real-valued data
with

Real-time hand gesture recognition for small devices Page 82

% additive Gaussian noise (whose level may be varied), or for binary
% class-labelled data based on probabilities given by a sigmoid link
% function.
%
% The SPARSEBAYES algorithm is then run on the data, and results and
% diagnostic information are graphed.
%

%
% Copyright 2009, Vector Anomaly Ltd
%
% This file is part of the SPARSEBAYES library for Matlab (V2.0).
%
% SPARSEBAYES is free software; you can redistribute it and/or modify
it
% under the terms of the GNU General Public License as published by
the Free
% Software Foundation; either version 2 of the License, or (at your
option)
% any later version.
%
% SPARSEBAYES is distributed in the hope that it will be useful, but
WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or
% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for
% more details.
%
% You should have received a copy of the GNU General Public License
along
% with SPARSEBAYES in the accompanying file "licence.txt"; if not,
write to
% the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
Boston,
% MA 02110-1301 USA
%
% Contact the author: m a i l [at] m i k e t i p p i n g . c o m
%

function [ErrorRate]= ExperimentWithRVM(Model, OPTIONS)

 %Dividing data on K-Clusters for K-Fold training
 indicesKFold =
crossvalind('Kfold',Model.Data.Train.Group,OPTIONS.KFold);
 cp = classperf(Model.Data.Train.Group); %Initialize classperf
structure for error calculation

 %START: Loop for KFold test
 for i=1:OPTIONS.KFold
 test = (indicesKFold == i); train = ~test;
 if(OPTIONS.ExcludeTestingDataOnPCA)
 [trainingInput testingInput] =
PCA_TestSeparate(Model.Data.Train.Input(train,:),Model.Data.Train.Inpu
t(test,:),OPTIONS.UseNosOfMostVariantAxes);
 else
 trainingInput = Model.Data.Train.Input(train,:);
 testingInput = Model.Data.Train.Input(test,:);
 end
 %Train Input using RVM

Real-time hand gesture recognition for small devices Page 83

 RVMModel = trainRVM(trainingInput,
Model.Data.Train.Group(train,:),OPTIONS.Likelihood,OPTIONS.NoiseToSign
al);
 %Predict Output using RVM Model
 classes = testRVM(RVMModel, testingInput);
 classperf(cp,classes,test); %Update the error rate using new
prediction
 end
 %END: Loop for KFold test
 ErrorRate = cp.ErrorRate;

end

function[RVMModel] = trainRVM(inputs,groups, likelihood,
noiseToSignal)

 LIKELIHOOD = SB2_Likelihoods(likelihood);
 [N dimension] = size(inputs); % Number of points
 basisWidth = 0.05; % NB: data is in [0,1]
 %
 % Define probability of a basis function NOT being used by the
generative
 % model. i.e. if pSparse=0.90, only 10% of basis functions (on
average) will
 % be used to synthesise the data.
 %
 pSparse = 0.70;
 iterations = 500;
 %
 % Heuristically adjust basis width to account for
 % distance scaling with dimension.
 %
 basisWidth = basisWidth^(1/dimension);
 %

%%
%
 %
 % --- SYNTHETIC DATA GENERATION ---
 %

%%
%
 %

 %
 % Now define the basis
 %
 % Locate basis functions at data points
 %
 C = inputs;
 %
 % Compute ("Gaussian") basis (design) matrix
 %
 BASIS = exp(-distSquared(inputs,C)/(basisWidth^2));
 %
 %
 % Randomise some weights, then make each weight sparse with
probability

Real-time hand gesture recognition for small devices Page 84

 % pSparse
 %
 M = size(BASIS,2);
 w = randn(M,1)*100 / (M*(1-pSparse));
 sparse = rand(M,1)<pSparse;
 w(sparse) = 0;
 %
 % Now we have the basis and weights, compute linear model
 %
 z = BASIS*w;
 %
 % Finally generate the data according to the likelihood model
 %
 switch (LIKELIHOOD.InUse)
 case LIKELIHOOD.Gaussian,
 % Generate our data by adding some noise on to the generative
function
 noise = std(z) * noiseToSignal;
 Outputs = z + noise*randn(N,1);
 %
 case LIKELIHOOD.Bernoulli,
 % Generate random [0,1] labels given by the log-odds 'z'
 Outputs = groups; %double(rand(N,1)<SB2_Sigmoid(z));
 end
 %

%%
%
 %
 % --- SPARSE BAYES INFERENCE SECTION ---
 %

%%
%
 %
 % The section of code below is the main section required to run
the
 % SPARSEBAYES algorithm.
 %

%%
%
 %
 % Set up the options:
 %
 % - we set the diagnostics level to 2 (reasonable)
 % - we will monitor the progress every 10 iterations
 %
 OPTIONS = SB2_UserOptions();
 %
 % Set initial parameter values:
 %
 % - this specification of the initial noise standard deviation is
not
 % necessary, but included here for illustration. If omitted,
SPARSEBAYES
 % will call SB2_PARAMETERSETTINGS itself to obtain an appropriate
default
 % for the noise (and other SETTINGS fields).
 %

Real-time hand gesture recognition for small devices Page 85

 SETTINGS = SB2_ParameterSettings('NoiseStd',0.1);
 %
 % Now run the main SPARSEBAYES function
 %
 [PARAMETER, HYPERPARAMETER, DIAGNOSTIC] = ...
 SparseBayes(likelihood, BASIS, Outputs, OPTIONS, SETTINGS);
 %
 % Manipulate the returned weights for convenience later
 %
 RVMModel.C = inputs(PARAMETER.Relevant,:);
 RVMModel.Weights = PARAMETER.Value;
 RVMModel.BasisWidth = basisWidth;
 RVMModel.LIKELIHOOD = LIKELIHOOD;

end

%***

function [results] = testRVM(RVMModel, inputs)

 BASIS = exp(-
distSquared(inputs,RVMModel.C)/(RVMModel.BasisWidth^2));
 results = BASIS * RVMModel.Weights;

 if(RVMModel.LIKELIHOOD.InUse == RVMModel.LIKELIHOOD.Bernoulli)
 toOne = (SB2_Sigmoid(results)>0.5);
 results(toOne) = 1;
 results(~toOne) = 0;
 end

end

%%
%
%
% Support function to compute basis
%
function D2 = distSquared(X,Y)
 %
 nx = size(X,1);
 ny = size(Y,1);
 %
 D2 = (sum((X.^2), 2) * ones(1,ny)) + (ones(nx, 1) *
sum((Y.^2),2)') - ...
 2*X*Y';

end

Real-time hand gesture recognition for small devices Page 86

A.10 ExperimentWithSVM.m

% function [cp] = ExperimentWithSVM(Model, OPTIONS)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) 2009 University of Sussex
%
% Train and test the given MGO images using Support Vector Machine and
% return the error rate using K-fold cross validation.
%
% Input:
% -Model: Model which contains the data and other training info
%
% -OPTIONS: User options structure with SVM training parameters
info
%
% Output:
% -ErrorRate: Error rate of K-Fold test
%
% Dates:
% -First Published: 1-Sept-2009

function [ErrorRate] = ExperimentWithSVM(Model, OPTIONS)
 %Dividing data on K-Clusters for K-Fold training
 indicesKFold =
crossvalind('Kfold',Model.Data.Train.Group,OPTIONS.KFold);
 cp = classperf(Model.Data.Train.Group); %Initialize classperf
structure for error calculation

 %START: Loop for KFold test
 for i=1:OPTIONS.KFold
 test = (indicesKFold == i); train = ~test;
 if(OPTIONS.ExcludeTestingDataOnPCA)
 [trainingInput testingInput] =
PCA_TestSeparate(Model.Data.Train.Input(train,:),Model.Data.Train.Inpu
t(test,:),OPTIONS.UseNosOfMostVariantAxes);
 else
 trainingInput = Model.Data.Train.Input(train,:);
 testingInput = Model.Data.Train.Input(test,:);
 end
 %Train Input using SVM
 %SVMStruct = svmtrain(trainingInput,
Model.Data.Train.Group(train,:));
 SVMStruct = svmtrain(trainingInput,
Model.Data.Train.Group(train,:),'Kernel_Function', 'rbf');
 %Predict Output using SVM Model
 classes = svmclassify(SVMStruct,testingInput);
 classperf(cp,classes,test);

 end
 %END: Loop for KFold test
 ErrorRate = cp.ErrorRate;

end

Real-time hand gesture recognition for small devices Page 87

A.11 GetData.m

% function[data, group] = GetData(gesture, OPTIONS)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) 2009 University of Sussex
%
% Return the training data and the class of the data for supervised
% learning. Data will be either load from the given file or processed
using
% gesture videos.
%
% Input:
% -gesture: Data for experiment with one of the gesture from {'Bye',
% 'Come', 'Down', 'Go', 'Good Luck', 'Left', 'Right', 'Up',
'Victory'}
%
% -OPTIONS: User options structure for locations/folders for data
%
% Output:
% -data: Return the training data set
%
% -group: gesture id as group for data/row feature vector
%
% Dates:
% -First Published: 1-Sept-2009

function[data, group] = GetData(gesture, OPTIONS)

 %START: If OPTIONS.LoadNewData = 1
 if(OPTIONS.LoadNewData)

 [data, group] = LoadData(OPTIONS);

 if(OPTIONS.SaveData)
 %Saving the data for later use, which would save the time
to generate feature matrix
 SaveData(data,group,OPTIONS.DataFileName,0)
 end

 %PCA training input and select only given higest variant
principal
 %components
 [data] = PCA(data,OPTIONS.UseNosOfMostVariantAxes);

 if(OPTIONS.SaveData)
 %Saving data for later use, which would save the time
required for
 %feature calculation and PCA
 SaveData(data,group,OPTIONS.DataFileName,1)
 end

 end
 %END: If OPTIONS.LoadNewData

 if(OPTIONS.ExcludeTestingDataOnPCA)
 [data,group] = LoadDataFromFile(OPTIONS.DataFileName,0);

Real-time hand gesture recognition for small devices Page 88

 else
 [data,group] = LoadDataFromFile(OPTIONS.DataFileName,1);
 end

 [data, group] = GetTrainingData(gesture, OPTIONS, data, group);

end

%Save the data according to the option for later use
function SaveData(data,group,fileName,pca)

 switch (fileName)

 case 'Data_AnitaRudra'
 if(pca)
 save Data_AnitaRudra_PCA data group
 else
 save Data_AnitaRudra data group
 end
 case 'Data_AnitaRudraPushmitaRajendra'
 if(pca)
 save Data_AnitaRudraPushmitaRajendra_PCA data group
 else
 save Data_AnitaRudraPushmitaRajendra data group
 end
 otherwise,
 error('Unrecognised file name: ''%s''', fileName)
 end
end

% Load the training data from the given file name for training
function [data,group] = LoadDataFromFile(fileName,pca)

 switch (fileName)

 case 'Data_AnitaRudra'
 if(pca)
 load Data_AnitaRudra_PCA data group
 else
 load Data_AnitaRudra data group
 end
 case 'Data_AnitaRudraPushmitaRajendra'
 if(pca)
 load Data_AnitaRudraPushmitaRajendra_PCA data group
 else
 load Data_AnitaRudraPushmitaRajendra data group
 end
 otherwise,
 error('Unrecognised file name: ''%s''', fileName)
 end
end

Real-time hand gesture recognition for small devices Page 89

A.12 LoadData.m

% function[data, group] = LoadData(option)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) 2009 University of Sussex
%
% The function process the videos data from the OPTIONS setting
% and produce the inpute data for training
%
% Input:
% -OPTIONS: User options structure for locations/folders for data
%
% Output:
% -data: training dada processed from the gestures videos
%
% -group: gesture id as group for data/row feature vector
%
% Dates:
% -First Published: 1-Sept-2009

function[data, group] = LoadData(OPTIONS)

 data = [];
 group = [];

 %START: Loop over samples/users data
 for iLocations=1: length(OPTIONS.Locations)
 %START: Loop over gestures
 for iGesture=1:length(OPTIONS.Gestures)
 path =
sprintf('%s\\%s\\%s',OPTIONS.RootFolder,OPTIONS.Locations{iLocations},
OPTIONS.Gestures{iGesture});

 %Get the various images for a give location
 [MHIs, MGO] = GetMGOImages(path,OPTIONS);

 %Add one gesture video column wise i.e. number of column
equal to
 %number of gesture videos
 newData = GetMGOImagesMatrix(MGO,OPTIONS);
 data = [data; newData];
 group = [group; repmat(iGesture,[size(newData,1) 1])];

 clear MHIs MGO newData
 clear memory

 end %END: Loop over gestures
 end %END: Loop over samples/users data

 %Randomize the row/sample order
 newIndices = randperm(length(group));
 data = data(newIndices,:);
 group = group(newIndices,:);

end

Real-time hand gesture recognition for small devices Page 90

A.13 GetFeatures.m

% function [data, group] = GetFeatures(locations,groupValue, OPTIONS)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) 2009 University of Sussex
%
% This function load the features of specified locations/folders
gesture videos
% using MHI and MGO methods
%
% Input:
% -locations: locations/folders of the video
%
% -groupValue: value for the group/class
%
% -OPTIONS: User options structure for MHI, MGO and others
%
% Output:
% -data: feature matrix a gesture per column (NOT PER ROW)
%
% -group: value of group/class which is same as groupValue
%
% Dates:
% -First Published: 1-Sept-2009

function [data, group] = GetFeatures(locations,groupValue, OPTIONS)
 numberOfFolder = size(locations,2);
 data = [];
 %START: Loop for all locations
 for i=1:numberOfFolder
 %Get the various images for a give location
 [MHIs, MotionGradientOrientations] =
GetMGOImages(locations{1},OPTIONS);

 %Add one gesture video column wise i.e. number of column equal
to
 %number of gesture videos
 data = [data;
GetMGOImagesMatrix(MotionGradientOrientations,OPTIONS)];

 clear MHIs ts masks MotionGradientOrientations mhiMasks
 clear memory

 end %END: Loop for all locations
 data = data';
 group = repmat(groupValue,[1 size(data,2)]); %Assign group value
for each gesture
end %END: function [data, group] = GetFeatures(locations,groupValue,
OPTIONS)

Real-time hand gesture recognition for small devices Page 91

A.14 PCA.m

% function [pcaTrainData] = PCA(trainData,useNosOfMostVariantAxes)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) 2009 University of Sussex
%
% The function do the PCA for the given input data
%
% Input:
% -trainData: training dada
%
% -useNosOfMostVariantAxes: Number of most variant principle
component to
% use to generate the project from the higher dimention to
%
% -OPTIONS: User options structure for MHI, MGO and others
%
% Output:
% -pcaTrainData: Output after the PCA
%
% Dates:
% -First Published: 1-Sept-2009

function [pcaTrainData] = PCA(trainData,useNosOfMostVariantAxes)

 [noRows noCols] = size(trainData);

 meanValues = mean(trainData,1);
 trainData = trainData - repmat(meanValues,noRows,1);

 covResult = cov(trainData);
 %covResult(1:10,1:10)
 [V,D] = eig(covResult);
 %V(1:10,1:10)
 %D(1:10,1:10)
 %[V,D]

% beforeSort = diag(D);
% afterSort = sort(beforeSort);
% diff = abs(beforeSort - afterSort);
% sum(diff)
 pcaTrainData = trainData * V(:,noCols-
useNosOfMostVariantAxes+1:noCols);

 clear covResult V D noCols
end %END: [pcaTrainData] = PCA(trainData,useNosOfMostVariantAxes)

Real-time hand gesture recognition for small devices Page 92

A.15 PCA_TestSeparate.m

% function [pcaTrainData,pcaTestData] =
% PCA_TestSeparate(trainData,testData,useNosOfMostVariantAxes)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) 2009 University of Sussex
%
% The function do the PCA for the given input data and testing data
will be
% projected based on the only training data- to make sure that
training set
% would not have any knowledge of testing data
%
% Input:
% -trainData: Input training data
%
% -testData: Input testing data
%
% -useNosOfMostVariantAxes: Number of most variant principle
component to
% use to generate the project from the higher dimention to
%
% Output:
% -pcaTrainData: Output after the PCA
%
% -pcaTestData: Output after the PCA of test data based on the
training
% data
%
% Dates:
% -First Published: 1-Sept-2009
function [pcaTrainData,pcaTestData] =
PCA_TestSeparate(trainData,testData,useNosOfMostVariantAxes)

 noCols = size(trainData,2);
 covResult = cov(trainData);
 [V,D] = eig(covResult);
 pcaTrainData = trainData * V(:,noCols-
useNosOfMostVariantAxes+1:noCols);
 pcaTestData = testData * V(:,noCols-
useNosOfMostVariantAxes+1:noCols);

 clear covResult V D noCols
end

Real-time hand gesture recognition for small devices Page 93

A.16 GetMGOImages.m

% function [MHIs, MotionGradientOrientations]=
% GetMGOImages(location,OPTIONS)
%
% This function return the MHIs, Masks, MGO Images
% using MHI and MGO methods of the given location's videos
%
% Input:
% -locations: locations/folders of the gesture video
%
% -OPTIONS: User options structure for MHI, MGO and others
%
% Output:
% -MHIs: Motion History Images
%
% -MotionGradientOrientations: Motion Gradient Orientation images
for of
% each MHI
%
% Dates:
% -First Published: 1-Sept-2009

function [MHIs,MotionGradientOrientations]=
GetMGOImages(location,OPTIONS)

 list=dir(location);

 %if it read the system file names as well then remove those system
files, if they exist
 %they always use to be 2
 if list(1).name == '.',
 list = list(3:end);
 end
 N = size(list,1);

 %Allocate the memory
 MHIs = cell(N,1);
 MotionGradientOrientations = cell(N,1);

 %START: Loop through all gesture videos
 for i=1:N
 filename = strcat(location, '/',list(i).name);
 %Get the Motion History Image
 [MHIs{i}] =
GetMotionHistory(filename,OPTIONS.Delta,OPTIONS.Frame_Buffer_Size,OPTI
ONS.Use_AVIread);

 %Get the Motion Gradient Orientations image from the MHI
according
 %the use options
 [MotionGradientOrientations{i}] =
GetMotionGradientOrientations(MHIs{i}, OPTIONS.Delta_Min,
OPTIONS.Delta_Max,OPTIONS.Gradient_Epsilon,OPTIONS.One_Eighty_By_PI);
 end
 %END: Loop through all gesture videos
end

Real-time hand gesture recognition for small devices Page 94

A.17 GetPrePCA_V_Matrix.m

% function [V] = GetPrePCA_V_Matrix(trainData)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) 2009 University of Sussex
%
% The function do the PCA for the given input data
%
% Input:
% -trainData: training dada
%
%
% Output:
% -V: Matrix V whose columns are the corresponding eigenvectors
%
% Dates:
% -First Published: 1-Sept-2009

function [V] = GetPrePCA_V_Matrix(trainData)

 [noRows noCols] = size(trainData);

 meanValues = mean(trainData,1);
 trainData = trainData - repmat(meanValues,noRows,1);

 covResult = cov(trainData);
 %covResult(1:10,1:10)
 [V,D] = eig(covResult);

end %END: [V] = GetPrePCA_V_Matrix(trainData)

Real-time hand gesture recognition for small devices Page 95

A.18 GetMGOImagesMatrix.m

% function [MGOMatrix] = GetMGOImagesMatrix(MGOImages,OPTIONS)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) 2009 University of Sussex
%
% This function generate the MGO Matrix from the given MGO images
%
% Input:
% -MGOImages: MGO Images
%
% -OPTIONS: User options structure for resize/rescale
%
% Output:
% -MGOMatrix: MGO matrix i.e. feature matrix of given MGO Images
%
% Dates:
% -First Published: 1-Sept-2009

function [MGOMatrix] = GetMGOImagesMatrix(MGOImages,OPTIONS)

 if(length(MGOImages)>0)
 aMGOImage = MGOImages{1};
 aMGOImage = imresize(aMGOImage,OPTIONS.MGOImages_Scale);
%resize the image
 [row col] = size(aMGOImage);
 MGOMatrix = zeros(length(MGOImages),row * col);
 for i=1:length(MGOImages);
 aMGOImage = MGOImages{i};
 %aMGO = imresize(aMGO,[NaN OPTIONS.MGO_Width]); %resize
the image
 aMGOImage = imresize(aMGOImage,OPTIONS.MGOImages_Scale);
%resize the image
 MGOMatrix(i,:) = aMGOImage(:); %convert image matrix to a
row vector
 end
 %MGOMatrix = MGOMatrix'; %convert rows vector to cols vector
 else
 MGOMatrix = []; %If size of MGOImages is 0 then return empty
matrix
 end
end %END: function [MGOMatrix] = GetMGOImagesMatrix(MGOImages,OPTIONS)

Real-time hand gesture recognition for small devices Page 96

A.19 GraphPlot.m

% function GraphPlot()
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) Copyright University of Sussex
%
% Plot the graph for different hand gestures recognition model's
result.
%
% Input:
% -None
%
% Output:
% -Based on the called function. Either will write to file or
console
% output
%
% Dates:
% -First Published: 1-Sept-2009

function GraphPlot()

% %Print the tables for NB
% files = {'N:\Thesis\Working\Results\First with K-5 to
30\All_All.txt' ...
% ,'N:\Thesis\Working\Results\First with K-5 to 30\All_LR.txt'
...
% ,'N:\Thesis\Working\Results\First with K-5 to 30\All_UD.txt'
...
% ,'N:\Thesis\Working\Results\First with K-5 to
30\Rudra_RF.txt' ...
% ,'N:\Thesis\Working\Results\First with K-5 to
30\Rudra_UD.txt' ...
% };
%
%
PrintSuccessRateTable(files,'RVM','N:\Thesis\Working\Results\First
with K-5 to 30\K_5to30_RVM.txt');

% %Print the tables for All methods for single signer
% files = {'N:\Thesis\Working\Results\Single
Signer\RBF_Single_Singer.txt' ...
% ,'N:\Thesis\Working\Results\Single
Signer\MLP_Single_Singer.txt' ...
% ,'N:\Thesis\Working\Results\Single
Signer\NB_Single_Singer.txt' ...
% ,'N:\Thesis\Working\Results\Single
Signer\SVM_Single_Singer.txt' ...
% ,'N:\Thesis\Working\Results\Single
Signer\RVM_Single_Singer.txt' ...
% };
%
%
PrintSuccessRateTableAllGestures(files,'N:\Thesis\Working\Results\Sing
le Signer\Single_Singer.txt');

% %Print the tables for All methods for single signer

Real-time hand gesture recognition for small devices Page 97

% files = {'N:\Thesis\Working\Results\All
Signers\RBF_All_Signers.txt' ...
% ,'N:\Thesis\Working\Results\All Signers\MLP_All_Signers.txt'
...
% ,'N:\Thesis\Working\Results\All Signers\NB_All_Signers.txt'
...
% ,'N:\Thesis\Working\Results\All Signers\SVM_All_Signers.txt'
...
% ,'N:\Thesis\Working\Results\All Signers\RVM_All_Signers.txt'
...
% };
%
%
PrintSuccessRateTableAllGestures(files,'N:\Thesis\Working\Results\All
Signers\All_Singer.txt');

 %Print the tables for All methods for single signer
 files = {'N:\Thesis\Working\Results\Different Training
Size\30\RBF_All_Signers30.txt' ...
 ,'N:\Thesis\Working\Results\Different Training
Size\30\MLP_All_Signers30.txt' ...
 ,'N:\Thesis\Working\Results\Different Training
Size\30\NB_All_Signers30.txt' ...
 ,'N:\Thesis\Working\Results\Different Training
Size\30\SVM_All_Signers30.txt' ...
 ,'N:\Thesis\Working\Results\Different Training
Size\30\RVM_All_Signers30.txt' ...
 };

PrintSuccessRateTableAllGestures(files,'N:\Thesis\Working\Results\Diff
erent Training Size\30\All_Singer30.txt');

end

%Print the success rate on the given fileName by reading the results
from
%the files for the given model (successFor)
function PrintSuccessRateTable(files,successFor,fileName)

 result = [];
 K = [];
 for i=1:length(files)
 [K,RBF,SVM,MLP,NB,RVM] = textread(files{i},'%f %f %f %f %f
%f');
 if(strcmpi(successFor,'SVM'))
 result = [result SVM];
 elseif (strcmpi(successFor,'NB'))
 result = [result NB];
 elseif (strcmpi(successFor,'RVM'))
 result = [result RVM];
 end

 end
 result = 100 - (100 .* result);
 result = [K result];

 fid = fopen(fileName,'wt');
 [Rows,Cols] = size(result);

Real-time hand gesture recognition for small devices Page 98

 for iRow=1:Rows
 for iCol=1:Cols
 if (iCol~=1)
 fprintf(fid,'\t');
 end
 fprintf(fid,'%2.0f',result(iRow,iCol));
 end
 if (iRow~=Rows)
 fprintf(fid,'\n');
 end
 end
 fclose(fid);

end

%Print the success rate on the given fileName by reading the results
from
%the files
function PrintSuccessRateTableAllGestures(files,fileName)

 result = [];
 for i=1:length(files)
 [errorRate] = textread(files{i},'%f');
 result = [result errorRate];
 end
 result = 100 - (100 .* result);

 avgSuccess = sum(result) ./ (size(result,1));

 fid = fopen(fileName,'wt');

 [Rows,Cols] = size(result);
 for iRow=1:Rows
 for iCol=1:Cols
 if (iCol~=1)
 fprintf(fid,'\t');
 end
 fprintf(fid,'%2.0f',result(iRow,iCol));
 end
 %if (iRow~=Rows)
 fprintf(fid,'\n');
 %end
 end

 [Rows,Cols] = size(avgSuccess);
 for iRow=1:Rows
 for iCol=1:Cols
 if (iCol~=1)
 fprintf(fid,'\t');
 end
 fprintf(fid,'%2.2f',avgSuccess(iRow,iCol));
 end
 end

 fclose(fid);

end

Real-time hand gesture recognition for small devices Page 99

A.20 TestMGO.m

% function TestMGO(location, OPTIONS)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) 2009 University of Sussex
%
% Testing the MGO output to cross validate the features extraction
% functions. i.e. The main purpose of this file is to cross validate
the MHI and MGO.
%
% Input:
% -location: location/folder of the videos
% -OPTIONS: users options/model for experiment
%
% Output:
% -Empty
%
% Dates:
% -First Published: 1-Sept-2009

function TestMGO(location, OPTIONS)

 filename = 'N:\Thesis\Data\Rudra-Day\Victory\Victory_Rudra01.avi';
 %Get the Motion History Image
 [MHI] =
GetMotionHistory(filename,OPTIONS.Delta,OPTIONS.Frame_Buffer_Size,OPTI
ONS.Use_AVIread);

 %Get the Motion Gradient Orientations image from the MHI according
 %the use options
 [MGO] = GetMotionGradientOrientations(MHI, OPTIONS.Delta_Min,
OPTIONS.Delta_Max,OPTIONS.Gradient_Epsilon,OPTIONS.One_Eighty_By_PI);

 %Map delta duration to 0 to 255 to generate gray scale image
 %(gMHI)
 gMHI = MHI;
 tempUpdate = MHI>0;
 gMHI(tempUpdate)= MHI(tempUpdate) .* (255./OPTIONS.Delta);
 gMHI = uint8(gMHI);

 gMHI = imresize(gMHI,OPTIONS.MGOImages_Scale); %resize the image
 MGO = imresize(MGO,OPTIONS.MGOImages_Scale); %resize the image

 imtool(gMHI)
 imtool(MGO)
 return;

 %Get MGO Images
 [MHIs, MotionGradientOrientations] =
GetMGOImages(location,OPTIONS);

 %Display the Images using imtool
 for i=1:5%length(MHIs)

 %Map delta duration to 0 to 255 to generate gray scale image
 %(mhiMasks)

Real-time hand gesture recognition for small devices Page 100

 gMHI = MHIs{i};
 tempUpdate = MHIs{i}>0;
 gMHI(tempUpdate)= MHIs{i}(tempUpdate) .* (255./OPTIONS.Delta);
 gMHI = uint8(gMHI);

 imtool(gMHI)

 %imtool(MotionGradientOrientations{i})
 end

% data = GetMGOImagesMatrix(MotionGradientOrientations,OPTIONS);
% [data] = PCA(data,OPTIONS.UseNosOfMostVariantAxes);
% %[data] = PCA2(data',OPTIONS.UseNosOfMostVariantAxes);
% size(data)

 clear MHIs ts masks MotionGradientOrientations mhiMasks
 clear memory
end %END: function TestMGO(location, OPTIONS)

Real-time hand gesture recognition for small devices Page 101

A.21 GetTrainingData.m

% function[data, group] = GetTrainingData(gesture, OPTIONS, data,
group)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) Copyright University of Sussex
%
% Prepare the training and testing set from the input data based on
input
% gesture
%
% Input:
% -gesture: Data for experiment with one of the gesture from {'Bye',
% 'Come', 'Down', 'Go', 'Good Luck', 'Left', 'Right', 'Up',
'Victory'}
%
% -OPTIONS: User options structure for locations/folders for data
%
% -data: input training data to generate the features vector
%
% -group: gesture id as group for data/row feature vector
%
% Output:
% -data: return the data
%
% -group: gesture id as group for data/row feature vector
%
% Dates:
% -First Published: 1-Sept-2009

function[data, group] = GetTrainingData(gesture, OPTIONS, data,
group)

 if(~strcmpi(gesture,'All'))
 index = strmatch(gesture, OPTIONS.Gestures,'exact');
 positiveClass = group == index(1);
 positiveData = data(positiveClass,:);
 negativeData = data(~positiveClass,:);

 positiveCases = size(positiveData,1)
 negativeCases = size(negativeData,1);

 if(positiveCases>100)
 positiveData = positiveData(1:100,:);
 end
 positiveCases=100;

 if(negativeCases>positiveCases)
 negativeCases = positiveCases;
 end
 negativeData = negativeData(1:negativeCases,:);

 data = positiveData;
 group = repmat(1,[positiveCases 1]);

 data = [data; negativeData];

Real-time hand gesture recognition for small devices Page 102

 group = [group; repmat(0,[negativeCases 1])];

 newIndices = randperm(length(group));
 data = data(newIndices,:);
 group = group(newIndices,:);
 end

end

Real-time hand gesture recognition for small devices Page 103

A.22 GetMotionHistory.m

% function [MHI] =
% GetMotionHistory(filename,DELTA,FRAME_BUFFER_SIZE,USE_AVIREAD)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) Copyright University of Sussex
%
% Generate the Motion History image from the give video file.
%
% Input:
% -filename: video's full path
%
% -DELTA: Time in Second, the duration for Motion History Images
%
% -FRAME_BUFFER_SIZE: Buffer size to calculate the frames difference
%
% -USE_AVIREAD: ption whether to read video using AVI (1) or
multimedia
% reader (0) library
%
% Output:
% -MHI: MHI of the input video
%
% Dates:
% -First Published: 1-Sept-2009

function [MHI] =
GetMotionHistory(filename,DELTA,FRAME_BUFFER_SIZE,USE_AVIREAD)

 %Variables initialization
 MHI = [,];
 previousFrames = cell(FRAME_BUFFER_SIZE,1);
 currentFrameIndex = 1;
 timestamp=0;
 timestampFactor = 0;

 %[pathstr, name, ext, ver] = fileparts(filename);
 if(USE_AVIREAD) %if USE_AVIREAD = 1 (TRUE)

 %read the movie using matlab avi library
 mov = aviread(filename);
 numberOfFrames = size(mov,2);
 %START: Loop for each frame of the gesture video
 for i=1:numberOfFrames
 aFrame = frame2im(mov(i)); %converting a movie frame to
image
 if(i==1)
 try
 MHI = rgb2gray(aFrame); %converting frame image to
gray scale
 catch
 %Error will come if image is already in gray scale
 MHI = aFrame;
 end
 %allocating the first frame to index
 %2 to remove the all backgroud from the first frame only
 previousFrames{2} = MHI;

Real-time hand gesture recognition for small devices Page 104

 MHI = MHI .* 0; %allocating the MHI size equal to frame
size
 for j=1:FRAME_BUFFER_SIZE
 if(j~=2)
 previousFrames{j} = MHI; %allocating all buffer
image size equal to frame size
 end
 end
 MHI = double(MHI); %Changing data time of MHI to double

 %Calculating the time stamp factor i.e. real time
elapsed
 %between each frame
 movInfo = aviinfo(filename);
 timestampFactor = 1/movInfo.FramesPerSecond;
 end
 timestamp = timestampFactor*i; %total time elapsed

 %Updating MHI using new frame
 [MHI,previousFrames,currentFrameIndex] =
addNewFrameOnMHI(MHI, aFrame, previousFrames,
currentFrameIndex,timestamp,FRAME_BUFFER_SIZE,DELTA);
 end
 %END: Loop for each frame of the gesture video

 clear numberOfFrames

 else %if file format is non-avi
 mov = mmreader(filename);
 %START: Loop for each frame of the gesture video
 for i=1:mov.NumberOfFrames
 aFrame = read(mov,i); %reading ith movie frame
 if(i==1)
 try
 MHI = rgb2gray(aFrame); %converting frame image to
gray scale
 catch
 %Error will come if image is already in gray scale
 MHI = aFrame;
 end
 %allocating the first frame to index
 %2 to remove the all backgroud from the first frame only
 previousFrames{2} = MHI;
 MHI = MHI .* 0; %allocating the MHI size equal to frame
size
 for j=1:FRAME_BUFFER_SIZE
 if(j~=2)
 previousFrames{j} = MHI; %allocating all buffer
image size equal to frame size
 end
 end
 MHI = double(MHI); %Changing data time of MHI to double

 %Calculating the time stamp factor i.e. real time
elapsed
 %between each frame
 movInfo = mmfileinfo(filename);
 timestampFactor = movInfo.Duration/mov.NumberOfFrames;
 end
 timestamp = timestampFactor*i; %total time elapsed

Real-time hand gesture recognition for small devices Page 105

 %Updating MHI using new frame
 [MHI,previousFrames,currentFrameIndex] =
addNewFrameOnMHI(MHI,aFrame,previousFrames,currentFrameIndex,timestamp
,FRAME_BUFFER_SIZE,DELTA);
 end
 %END: Loop for each frame of the gesture video

 end

 %Adjust timestamp to 0 to DELTA
 keepMHIUpto = DELTA-timestamp;
 tempUpdate = MHI>0; %Adjust only non-zero fields
 MHI(tempUpdate) = MHI(tempUpdate) + keepMHIUpto;

 clear filename previousFrames currentFrameIndex timestampFactor
aFrame mov movInfo

end

% function [MHI,previousFrames,currentFrameIndex] =
%
addNewFrameOnMHI(MHI,aNewFrame,previousFrames,currentFrameIndex,timest
amp
% ,FRAME_BUFFER_SIZE,DELTA)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) Copyright University of Sussex
%
% Generate the Motion History image from the give video file.
%
% Input:
% -MHI: MHI which will be update using current frame (aNewFrames)
%
% -aNewFrame: New Frame to update MHI
%
% -previousFrames: Previous frames
%
% -currentFrameIndex: Index to update the buffer using current frame
%
% -timestamp: Time stamp i.e. time elapsed from the starting of the
video
%
% -FRAME_BUFFER_SIZE: the size of the buffer
%
% -DELTA: Time duration used for MHI
%
% Output:
% -MHI: Updated MHI
%
% -previousFrames: Updated frame bufffer using current aNewFrames
%
% -currentFrameIndex: Next buffer index to update
% i.e. currentFrameIndex + 1, in cyclic order

function [MHI,previousFrames,currentFrameIndex] =
addNewFrameOnMHI(MHI,aNewFrame,previousFrames,currentFrameIndex,timest
amp,FRAME_BUFFER_SIZE,DELTA)

Real-time hand gesture recognition for small devices Page 106

 %Converting the frame to gray scale and saving to buffer
 try
 previousFrames{currentFrameIndex} = rgb2gray(aNewFrame);
 catch
 %Error will come if image is already in gray scale
 previousFrames{currentFrameIndex} = aNewFrame;
 end

 %Calculating next frame index in cyclic order
 nextFrameIndex = currentFrameIndex+1;
 if(nextFrameIndex>FRAME_BUFFER_SIZE)
 nextFrameIndex = 1;
 end

 %Generate the silhouette using the frame difference then binary
thresh
 %holding
 silhouette = imabsdiff(previousFrames{currentFrameIndex},
previousFrames{nextFrameIndex});
 thresh = graythresh(silhouette);
 silhouette = (silhouette >= thresh * 255);

 %Updating the MHI using silhouette
 [MHI] = UpdateMotionHistory(MHI, silhouette, timestamp, DELTA);
 currentFrameIndex = nextFrameIndex;

 clear silhouette thresh nextFrameIndex

end

Real-time hand gesture recognition for small devices Page 107

A.23 UpdateMotionHistory.m

% function [MHI] = UpdateMotionHistory(MHI, silhouette, timestamp,
DELTA)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) Copyright University of Sussex
%
% Update Motion History Image with the given silhoutte.
%
% Input:
% -MHI: MHI which will be update using current silhouette
%
% -silhouette: Silhouette to update MHI
%
% -timestamp: Time stamp i.e. time elapsed from the starting of the
video
% which will be use for MHI
%
% -DELTA: Time in Second, the duration for Motion History Image
%
% Output:
% -MHI: Updated MHI
%
% Dates:
% -First Published: 1-Sept-2009

function [MHI] = UpdateMotionHistory(MHI, silhouette, timestamp,
DELTA)

 %Update all silhoutte location with current timestamp
 MHI(silhouette) = timestamp;

 %Set all MHI location to 0, if timestamps in given locations are
older than DELTA
 keepMHIUpto = timestamp-DELTA; %Either we could do (timestamp-
DELTA-1)
 %OR we could always assign DELTA value to 1 less
 toZero = MHI < keepMHIUpto;
 MHI(toZero) = 0;

 clear keepMHIUpto toZero

end %END: function [MHI] = UpdateMotionHistory(MHI, silhouette,
timestamp, DELTA)

Real-time hand gesture recognition for small devices Page 108

A.24 GetMotionGradientOrientations.m

% function [orientation] = GetMotionGradientOrientations(MHI,
% DELTA_MIN, DELTA_MAX,GRADIENT_EPSILON,ONE_EIGHTY_BY_PI)
%
% Author: Rudra PK Poudel
% Contact: rudrapoudel@gmail.com
% (c) Copyright University of Sussex
%
% Generate the Motion Gradient Orientations from the give MHI.
%
% Input:
% -MHI: MHI to generate the Motion Gradient Orientation
%
% -DELTA_MIN: Set the MGO to 0 if value of neighbour is less than
% Delta_Min
%
% -DELTA_MAX: Set the MGO to 0 if value of neighbour is greater than
% Delta_Max
%
% -GRADIENT_EPSILON: Set the MGO to 0 if value of X or Y gradient is
less
% than Gradient_Epsilon
%
% -ONE_EIGHTY_BY_PI: Value of 180.PI to optimize the code
%
% Output:
% -orientation: Motion Gradient Orientation
%
% Dates:
% -First Published: 1-Sept-2009

function [orientation] = GetMotionGradientOrientations(MHI, DELTA_MIN,
DELTA_MAX,GRADIENT_EPSILON,ONE_EIGHTY_BY_PI)

 %Calculating the X and Y derivatives using Sobel operator
 h = fspecial('sobel');
 Fy = conv2(MHI,h,'same'); %Y-Derivative

 h = -h';
 Fx = conv2(MHI,h,'same'); %X-Derivative

 % Calculating orientation using X and Y derivatives
 %orientation = rad2deg(atan(Fy ./ Fx)); %Gradient orientation
 orientation = (atan(Fy ./ Fx) * ONE_EIGHTY_BY_PI); %Gradient
orientation

% %Allocating the mask, by default all are on
% mask = MHI .* 1;

 %off the mask where X and Y both gradients are too low
 toZero = (abs(Fx) < GRADIENT_EPSILON) & (abs(Fy) <
GRADIENT_EPSILON);
% mask(toZero) = 0;
 orientation(toZero) = 0;

 %Also off the mask on the border and noise area, using dilate and
erode

Real-time hand gesture recognition for small devices Page 109

 %trick
 se = strel('square',3);
 Fy = imdilate(MHI,se,'notpacked','same');
 Fx = imerode(MHI,se,'notpacked','same');

 tempFyMinusFx = Fy - Fx;
 toZero = tempFyMinusFx < DELTA_MIN | tempFyMinusFx > DELTA_MAX;
% mask(toZero) = 0;
 orientation(toZero) = 0;

 clear h Fy Fx toZero se tempFyMinusFx

end %END: function [orientation] = GetMotionGradientOrientations(MHI,
DELTA_MIN, DELTA_MAX,GRADIENT_EPSILON,ONE_EIGHTY_BY_PI)

