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Abstract: This dissertation proposes a vision based hand gestures 

recognition system for low resource devices using a temporal template 

based approach. The five most popular machine learning algorithms- 

Naïve Bayes (NB), Radial Basis Function (RBF), Multi-Layer Perceptron 

(MLP), SVM and sparse Bayesian classifier or Relevance Vector Machine 

(RVM) are used to test the viability of the methods for low resource 

devices. It is found that RBF and NB outperform the other methods. 

Correct classification rates of 85% and 81.22% are obtained from RBF 

and NB in a loosely controlled noisy environment. These results are not 

only comparable to the best methods available but are also suitable for 

implementation in real-time environments and on low resource devices.  

  

  



~ iv ~ 
 

Contents 

1. Introduction ..................................................................................... 1 

1.1 Research Question ...................................................................... 3 

2. Literature Review ............................................................................. 5 

2.1. Model Based Approach ............................................................... 6 

2.2. View Based Approach ................................................................. 7 

2.3. Gesture classification ................................................................. 8 

2.3.1. Rule Based Method .............................................................. 9 

2.3.2. Learning Based Method ........................................................ 9 

2.4. Summary of the Literature Review ............................................ 10 

3. Research Methodology .................................................................... 12 

3.1. Feature Extraction ................................................................... 12 

3.1.1 timed Motion History Image ................................................ 12 

3.1.2. Motion Gradient Orientation .............................................. 13 

3.1.3 Dimension Reduction .......................................................... 14 

3.2. Gesture Classification .............................................................. 15 

3.2.1. Naïve Bayes ....................................................................... 15 

3.2.2. Sparse Bayesian Classifier ................................................. 17 

3.2.3. Multi-Layer Perceptron ....................................................... 18 

3.2.4. Radial Basis Function ........................................................ 19 

3.2.5. Support Vector Machine ..................................................... 20 

4. Experiments and Results ............................................................... 21 

4.1 Description of Data ................................................................... 21 

4.2 Assumption of Low Resource Device .......................................... 23 

4.3 Parameters Tuning .................................................................... 23 

4.3.1. Naïve Bayes ....................................................................... 24 



~ v ~ 
 

4.3.2 Sparse Bayesian Classifier .................................................. 26 

4.3.3 Multi-Layer Perceptron ........................................................ 27 

4.3.4 Radial Basis Function ......................................................... 28 

4.3.5 Support Vector Machine ...................................................... 28 

4.4 Results ...................................................................................... 29 

4.4.1 Single Signer Hand Gestures Recognition ............................ 29 

4.4.2 Four Signers Hand Gestures Recognition ............................ 30 

4.4.3 Effect of Training Size ......................................................... 31 

4.4.4 Training and Testing Duration ............................................ 33 

5. Discussion and Conclusion ............................................................ 35 

5.1. Discussion ............................................................................... 35 

5.2. Applications of the System ....................................................... 40 

5.3. Limitations of the Study ........................................................... 41 

5.4. Future Work ............................................................................ 42 

5.5. Conclusion ............................................................................... 42 

Bibliography ....................................................................................... 44 

Appendix A: Code ............................................................................... 51 

A.1 SetUserOptions.m ..................................................................... 52 

A.2 DataCapture.m ......................................................................... 56 

A.3 GestureRecognition.m ............................................................... 60 

A.4 ExperimentGestureRecognition.m ............................................. 63 

A.5 ParamOptimizedGestureRecognition.m ..................................... 66 

A.6 ExperimentWithNaiveBayes.m .................................................. 68 

A.7 ExperimentWithMLP.m ............................................................. 71 

A.8 ExperimentWithRBF.m ............................................................. 77 

A.9 ExperimentWithRVM ................................................................ 81 

A.10 ExperimentWithSVM.m ........................................................... 86 



~ vi ~ 
 

A.11 GetData.m .............................................................................. 87 

A.12 LoadData.m ............................................................................ 89 

A.13 GetFeatures.m ........................................................................ 90 

A.14 PCA.m..................................................................................... 91 

A.15 PCA_TestSeparate.m ............................................................... 92 

A.16 GetMGOImages.m ................................................................... 93 

A.17 GetPrePCA_V_Matrix.m ........................................................... 94 

A.18 GetMGOImagesMatrix.m ......................................................... 95 

A.19 GraphPlot.m ........................................................................... 96 

A.20 TestMGO.m ............................................................................. 99 

A.21 GetTrainingData.m ............................................................... 101 

A.22 GetMotionHistory.m .............................................................. 103 

A.23 UpdateMotionHistory.m ........................................................ 107 

A.24 GetMotionGradientOrientations.m ........................................ 108 

 

  



~ vii ~ 
 

Acronym 

HCI Human Computer Interaction 

HMI Human Machine Interface 

HMM Hidden Markov Model 

K Size of features vector or used most variant principal 

components or number of features 

MEI Motion Energy Image 

MGO Motion Gradient Orientation 

MHI Motion History Image 

ML Machine Learning 

MLP Multi-Layer Perceptron 

MSE Mean Square Error 

RBF Radial Basis Function 

RVM Relevance Vector Machine or sparse Bayesian classifier 

SIFT Scale-Invariant Features Transform 

SVM Support Vector Machine 

tMHI timed Motion History Image 

  



Real-time hand gesture recognition for small devices  Page 1 
 

 

1. Introduction 

Hands are an intuitive way to communicate in human-to-human 

interactions. Hand communications are even more important for the 

hearing impaired. Hence, hand gestures would be a more natural and 

effective way to communicate with robots, computers, mobiles and other 

machines than using devices like keyboards, mice, touch panels and 

joysticks. Though Artificial Intelligent (AI), especially machine vision and 

machine learning, has progressed a lot in the last two decades the way 

humans communicate with machines has remained largely unchanged. 

Moreover, the decreasing prices and increasing power of electronic devices 

like computers and cameras are another attractive reason for more 

attention to be paid to vision based human machine interaction. 

In the last few years, hand gestures recognition has received much 

attention. Many review papers of hand gesture recognition have been 

published, for example Pavlovic, Sharma and Huang (1997), Wu and 

Huang (1999), Hassanpour, Wong and Shahbahrami (2008), Garg, 

Aggarwal and Sofat (2009) and others are evidence of increasing research 

interest in hand gesture recognition. Starner, Weaver and Pentland (1998) 

are able to correctly recognize 98% of American Sign Language in a 

restricted environment, which was a promising result at that time. 

However, even one decade after the early success of Starner, Weaver and 

     1 Introduction 
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Pentland (1998), none of the existing methods has achieved 100% correct 

classification, except with a much lesser number of simple gestures in a 

restricted environment. Achieving a good success rate with a small 

training set and complex gestures in a non-restricted environment is still 

out of the reach of existing systems. Moreover, gesture recognition in real-

time is still a big challenge due to processing complexity. 

Self-occlusion of fingers, color variation due to environmental changes, 

personal variation of hand shape and movement and variation of hand 

motion due to fatigue are all very difficult problems for hand gesture 

recognition. Moreover, the hand has more than 25 degrees of freedom 

(Francke, Ruiz-del-Solar and Verschae, 2007), which cause the lots of 

variation on hand gestures movement. Hence, this dissertation will explore 

whether an easy task for a human is really a difficult task for an intelligent 

system or whether we could solve the problem using a simple adaptive 

method. Moreover, the aim of this research work is to understand the 

problems of hand gesture recognition in more detail. Alternative 

approaches to solving the problem will be experimented with along with 

discussions of the possible ways forward for this complex problem of 

machine vision as well as machine learning. This dissertation will 

experiment with 9 hand gestures ranging from simple to complex. 

In the past, researchers had used different kinds of additional hand 

devices to recognize the hand gesture, such as mechanical gloves (Fels and 

Hinton 1997) and marker in figure tips (Kim, Albuquerque and Havemann 

2004). However, additional devices increase the cost of the system and 

creates uneasiness while making the hand gesture as well as being an 

unnatural way of communication. Alternatively, vision based methods are 

less difficult to implement and easy to use. Hence, this dissertation will 

focus on vision based hand gesture recognition approach. Also, it is worth 

to mention here that gestures are also related with other parts of the body 

other than the hand, like body gestures which is especially use to human 

behavior analysis as well as interaction with virtual world. 
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Most of the hand gesture recognition models use Hidden Markov Model 

(HMM) as HMM achieves remarkable success in similar kinds of speech 

and handwriting recognition problems. HMM and their various extensions 

have been tried by many researchers like Parallel HMM (PHMM) (Vogler 

and Metaxas 2001), self-organizing HMM (Baure and Kraiss 2002), 

adaptive extensions of HMM (Wilson and Bobick 2000) and pseudo two 

dimension HHM (P2-HMM). However, HMM has been criticized recently 

because HMM requires a large number of training sets and HMM analyses 

each sign as a whole i.e. without breaking it into small meaningful parts 

(Wong and Cipolla, 2005). Therefore, this dissertation explores hand 

gesture recognition using the following methods: naïve Bayesian (NB) 

classifier, sparse Bayesian classifier also known as Relevance Vector 

Machine (RVM), Radial Basis Function (RBF), Multi-Layer Perceptron 

(MLP) and Support Vector Machine (SVM). 

This dissertation will outline similar work as well as different approaches 

to hand gesture recognition in section 2. Research methodologies are 

described in section 3. In section 4, experimental results are described and 

in section 5, discussion of the results, limitations of the study, future work 

along with conclusion are described. 

1.1 Research Question 

Human-robot, human-computer and human-other machines interaction 

can all benefit from using hand signs as a more intuitive communication 

mechanism. However, most of the researches on the past have focused on 

increasing the success rate of hand gesture recognition and only a few of 

them considered the problems of real-time processing capacity, small 

training sets and minimum training time. More importantly, in the past 

there has been no focus given for small devices with low processing 

capacity, low memory and low resolution cameras. Hence, I strongly 

believe that we would be highly benefitted by a hand gesture recognition 

method available for low capacity devices. A method able to work on low 
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resource devices would of course be automatically able to work on high 

capacity devices. 

Hence, this dissertation will explore the real-time hand gesture recognition 

methodologies for the small devices. It will focus on different 

methodologies and their efficiency rather than simply improving one 

methodology of choice. It is important to first discover which methodology 

is the most suitable for low resource devices. Also, it is worth mentioning 

here that there has been no previous work which compares the different 

methodologies in the same experimental setting.  
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2. Literature Review 

There are many forms of human gestures, such as hand gesture, general 

body gesture and facial expression (Derpanis 2004). Sometimes only one 

hand is used for gestures and sometimes both hands are used. Also, 

sometimes hand gestures are used to express additional information along 

with verbal communication, while hand gestures are the only means of 

communication for deaf people. Therefore, some of the hand gestures are 

simple while others are complex. However, this dissertation will be focus 

on human machine interaction using single hand gesture. 

Hand gestures are purposeful movement of the hand (Hassanpour, Wong 

and Shahbahrami 2008), which carries the meaning. According to 

psychological study, hand gesture consists three phases: preparation, 

nucleus, and retraction. Preparation phase occurs before the nucleus 

phase, it might be short as well as long. Major hand movement phase 

where the actual gesture occurs is called nucleus phase. Retraction is the 

end phase of the gesture i.e. termination of the gesture, which might not 

occur if another gesture follows on continuously. 

According to bionics view, the understanding of the gestures depends 

upon effective tracking of the object of interest (i.e. the hand here in this 

      2 
Literature 
Review 

  



Real-time hand gesture recognition for small devices  Page 6 
 

case) and not merely on visual information of the whole environment 

(Wang, Zhang and Dai 2007). Hence, it is very important that we must 

effectively handle the environmental noise i.e. unnecessarily movement 

except the hand in this case. 

In general, vision based approaches fall into two different categories. One 

is the model based approach and another is the view based approach, 

which are separately summarized below. 

2.1. Model Based Approach 

The model based approaches tries to infer the knowledge of the hand 

posture using a 3D model of the hand skeleton. One of the earliest model 

based approach was proposed by Rehg and Kanade (1994), this uses the 

bare hand for gesture recognition. 3D models actually try to capture the 

information of the joints angles of the fingers and palm using multiple 

cameras to model the hand gesture. This kind of model is idealistic to 

communicate with virtual environment (Derpanis 2004).  

The model based approaches tries to estimate the hand parameters (joint 

angle of fingers and palm) for hand tracking using 2D image frames 

captured using multiple cameras. Normally, 2 to 4 cameras are used 

depending upon complexity of the environment and gestures. The hand 

parameters estimation from the 2D images is an inverse mapping problem, 

which is non-linear due to the 3D mapping of 2D projected image frames. 

Though there are several methods that exist for optimum parameter 

estimation in such situation such as Newton’s method but there is very 

high chance to get stuck in local optimum solution rather than the global 

optimum solution. Hence, estimation of best parameters is a difficult 

problem in itself. To overcome the above mentioned problem, Wu, Lin and 

Huang (2001) had applied Bayesian approaches but due to the high 

dimensionality problem with increasing number of parameters, this is 
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computationally more expensive. This excludes it from use in a real-time 

implementation.   

Model based approaches are robust in gesture recognition, that is the 

reason why this approach is one of the most active approach for hand 

gesture recognition research (Stenger, Mendonca and Cipolla 2001; Wu, 

Lin and Huang 2001; Kim, Albuquerque, Havemann et al. 2004; Wang, 

Zhang and Dai 2007). However, model based approaches tend to suffer 

greatly from self-occlusion of the hand, variation in background color and 

most importantly they are computationally very expensive. This again 

poses problems for real-time implementation. 

2.2. View Based Approach 

The difficulty of parameter estimation in the model based approaches lead 

to the significant focus on the view based approaches, which are also 

known as appearance based approaches (Black and Jepson 1996; Cui and 

Weng 1996; Gupta, Mittal, Dutta et al 2002; Wong and Cipolla 2005). View 

based approaches use a single camera to capture the hand gesture. As the 

view based approaches only use the single camera, these methods are less 

complex, easy to implement, cost effective and computationally much 

faster than model based approaches. The key difference between model 

based and view based approaches is the feature extraction step. Model 

based approaches construct the 3D hand model from the multiple cameras 

view by applying stereo vision approach and extract the features by 

estimating the joint angle of fingers and palm; while view based 

approaches work by capturing 2D hand gesture images using single 

camera and there are various methods that exist for feature extraction. 

However, most of the view based approaches further apply the eigenvector 

approach to reduce the high dimension points of the image to low 

dimension points image. As eigenvector transfer or map high dimensions 

points to less dimensions points, which not only help to reduce the 

computational time dramatically but importantly also help to create the 
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user’s hand shape, space and occlusion invariant solution. Finally, the 

extracted features are classified using machine learning algorithms. 

Most of the early view based approaches used skin color as a key to find 

the motion regions (Stenger 2006). However, the skin color detection is 

highly effected by lighting conditions in the environment. An alternative 

new approach for features extraction is use of local scale-invariant 

features transform (SIFT) (Lowe 1999). Wang and Wang (2008) have shown 

encouraging results using SIFT. The problem with the SIFT is again the 

computationally expensive. The optic flow method used by Essa and 

Pentland (1997) is another view based method. However, optic flow method 

is more suitable to tack the overall motion of the body not the relatively 

small spatial area of the hand movement. 

Another noble view based approach for feature extraction is called 

temporal template, a 2D image where the pixel value at each point 

represents the motion in that spatial location in the sequences of images, 

is introduced by Bobick and Davis (2001). The 2D vector image called 

Motion History Image (MHI) captures the spatial motion region on 

subsequent frames. MHI is further processed to find the motion gradient 

orientation (MGO) in each point and used as features vector for gesture 

classification (Bradski and Davis 2000). Due to the only 2D image 

calculation involve in MHI and MGO, the temporal template based method 

get advantage to run on real-time. Hence, this dissertation will explore the 

hand gesture recognition using the MHI and MGO approaches proposed by 

Bradski and Davis (2000) and Bobick and Davis (2001).     

2.3. Gesture classification 

After the features extraction, we could classify the features vector into a 

number of pre-define gestures. There are two major types of gesture 

classification method exist, which are defines as below. 
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2.3.1. Rule Based Method 

In this approach, the manually encoded rules for gestures are compared 

with the input features vector. Rules are matched against the features 

vector and gesture associated with the best matching rule is declared as 

resultant gesture. For an example, Cutler and Turk (1998) used the rule 

based method to identify the actions based on hand motion. The 

effectiveness of this model is based on manual ability to encode rules for 

all gestures, which is the major limitation of this method for large sets of 

gestures. Also, there is a limit to the human ability to write rules for 

variation on hand shape, lighting changes and others. 

2.3.2. Learning Based Method   

The limitation of a human ability to find the relationship between high 

dimensions features sets and gestures encourages the alternative 

approach based on Machine Learning (ML) algorithms. As ML algorithms 

are better able to self learn the relationships between variables i.e. 

mapping between high dimensions features sets and gestures. 

HMM (Starner, Weaver and Pentlan 1998; Lee and Kim 1999; Wilson and 

Bobick 1999; Marcel 2000; Nair and Clark 2000) is the most popular ML 

algorithm for gesture classification. The major reason for HMM’s 

popularity is due to its success on similar kind of voice and hand writing 

recognition problems. The HMM algorithm is also not problem free. The 

major problem is the choice of the number of states and transitions. And 

more importantly the transitions from one stage to another stage, which is 

do not map well to the real-world processes (Derpanis 2004). 

Alternatively, Time-Delay Neural Networks (TDNN) (Fels and Hinton 1997; 

Yang and Ahuja 1998), finite state machines (Bobick and Wilson 1997; 

Manresa, Varona, Mas et al 2005) and AdaBoost (Chen, Georganas and 

Petriu 2007; Francke, Ruiz-del-Solar and Verschae 2007) are also have 

been used for gesture classification problem, among them AdaBoost is 
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getting remarkably good success due to adaptive nature of its learning 

capability.   

2.4. Summary of the Literature Review 

In summary, though 3D model based approaches are robust but they are 

computationally expensive. Hence, this dissertation will focus on the view 

based approach. Extraction of the features vector though SIFT, Optic Flow 

and Haar-like (Lienhart and Maydt 2002; Chen, Georganas and Petriu 

2007) methods have seen significant success but as this dissertation is 

mainly focused on low resource devices it will focus on the temporal 

template method. Use of the temporal template method requires low 

memory and processing capacity. We will experiment with NB classifier, 

RVM, RBF and MLP. However, we will also compare our results with 

Support Vector Machine (SVM), the de-facto standard of machine learning 

algorithms. 

It is strongly believed that human vision system directly recognizes the 

movement from the motion itself i.e. without constructing the 3D model 

(Bobick and Davis 2001). This is another strong reason why we have 

chosen the vision based approach. Also, MHI represents the recency of the 

motion i.e. the how of the motion. Thresholding the MHI or MGO gives the 

region of the motion i.e. the where of the motion. Where or how is how we 

believe that human visual cortex process the visual information in the 

brain to recognize objects (Ungerleider and Mishkin 1982; Milner and 

Goodale 1995). That is another reason why it was decided to use the 

temporal template (i.e. MHI and MGO) based methods. 

The main purpose of this dissertation is hand gesture recognition system 

for low resource devices. Hence, the focus will be on experiments with 

different algorithms and on comparisons of their advantages and 

disadvantages regarding their suitability for implementation on low 

resource devices rather than just focusing on improvement of one 
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classification algorithm’s gesture classification rate. The methods used for 

experiments are described in detail in section 3.    
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3. Research Methodology 

Research methodology for real-time hand gesture recognition can be 

divided onto two parts. One is features extraction and another is gestures 

classification, both have been separately described below. 

3.1. Feature Extraction 

This dissertation uses the temporal template approach to extract the 

features vector. The features vector is created using Motion Gradient 

Orientation (MGO), which is proposed by Bradski and Davis (2000). Again, 

MGO is calculated using timed Motion History Image (tMHI), which is 

proposed by Davis (1999) and further improvement on Bobick and Davis 

(2001). 

3.1.1 timed Motion History Image 

To represent the how motion Bobick and Davis (2001) proposed the MHI. 

However, the representation of the MHI in floating point time manner i.e. 

timed motion history image (tMHI) is proposed by Bradski and Davis 

     3 
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(2000). tMHI is built by copying each frame’s silhouette values with a 

floating point timestamp to the tMHI. The tMHI is represented as below, 

,ݔሺ ܫܪܯݐ ሻݕ ൌ  ቐ
,ݔሺ ݐܽ ݁ݐݐݑ݋݄݈݅ݏ ݐ݊݁ݎݎݑܿ ࢌ࢏         ݐ ሻݕ
,ݔሺܫܪܯݐ ࢌ࢏ ࢋ࢙࢒ࢋ        0 ሻݕ ൏ ሺݐ െ    ሻߜ 

    ݄݃݊݅ݐ݋݊ ݋݀ ࢋ࢙࢏࢝࢘ࢋࢎ࢚࢕
      ሺ3.1ሻ 

Where, t is current timestamp and  is the maximum time duration to 

keep the motion history. The representation of the motion in timed manner 

makes the tMHI independent of the system speeds or frame rates within 

limits i.e. MHI capture the same area even with different frame rates 

(Bradski and Davis, 2000). Figure 3.1 shows a typical example of tMHI 

with a left moving hand, the tMHI value in other area than hand motions 

shows that the body movement is not controlled for while making the hand 

gestures.  

 

Figure 3.1: tMHI example of move left hand gesture, where body movement 
has not been controlled. 

3.1.2. Motion Gradient Orientation 

If we take the gradient of the tMHI (ref. figure 3.1), we could get the 

direction of the motion, which will gives us a normal optical flow 

representation (Bradski and Davis 2000). The gradient of the tMHI could 

be easily calculated by convolving with Sobel filters in the X and Y 
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direction yielding the derivatives Fx(x,y) and Fy(x,y) respectively. Then, 

motion gradient orientation (MGO) at each pixel is given by, 

߶ሺݔ, ሻݕ ൌ ݊ܽݐܿݎܽ  ி೤ሺ௫,௬ሻ
 ிೣ ሺ௫,௬ሻ

       ሺ3.2ሻ 

To avoid the gradient orientation on the edge of tMHI, which otherwise 

would negatively impact the MGO value and area of motion gradient, we 

initialize the MGO to zero where the neighboring differences are either too 

high (due to the larger temporal disparity) or too low (inside a silhouette). 

An example of MGO image for the tHMI show in figure 3.1 is shown in 

figure 3.2 below.  

 

Figure 3.2: An example MGO image for move left hand gesture. The 
corresponding tMHI is show in figure 3.1.  

3.1.3 Dimension Reduction 

To create the features vector from the MGO image as shown in figure 3.2, 

75% size of the MGO has been reduced i.e. reduced from 320x240 pixels 

size to 80x60 pixels by maintaining the height and width ratio. This needs 

to be done because otherwise it would require a high amount of memory 

for further processing and would be difficult to implement in low resource 

devices. Principle Component Analysis (PCA) has been used to generate the 

final features vector. The number of most variant or largest principle 
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components used was dependent upon the applied gesture classifier 

method. We have followed the following steps for PCA, 

i. Input training data and number of largest or most variant 

principle components (K) to use for features extraction.  

ii. Subtract the mean from training data. 

iii. Calculate the covariance matrix of training data, covResult 

(using MATLAB’s cov function). 

iv. Calculate the eigenvector V (using MATLAB’s eig function) 

using covResult matrix. 

v. Desired features vectors = training data * V using K largest or 

most variant principle components. 

The major reason for PCA is dimensions reduction, which not only helps to 

reduce the processing complexity but at the same time smoothes the noise 

up to a certain level. 

3.2. Gesture Classification 

The aim of this dissertation is to find the real-time gesture recognition 

methodology for low resource devices, hence we have experimented using 

different classification methodologies and also compare our results with 

most popular SVM classifier. Used classification methodologies are 

described below. Only 9 gestures are experimented with in this 

dissertation, hence all methods implemented 9 different small networks for 

each gesture. 

3.2.1. Naïve Bayes 

One of the simple Bayesian learning algorithms, which often performs 

better than complex algorithm in many cases, is called naïve Bayes 
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classifier. The basic principle behind naïve Bayes classifier is that it tries 

to maximize the posterior probability (MAP). 

Suppose we would like to learn a function f, which would map a training 

sets X with attribute values (x1, x2,….xn) to target Y with target possibilities 

(y1, y2,…yn) i.e. f: X->Y. This problem can be formulate as MAP hypothesis 

as below, 

ெ஺௉ݕ ൌ    ௬೔ є ௒ݔܽ݉݃ݎܽ  ܲሺݕ௜|ݔଵ, ,ଶݔ …  ௡ሻݔ     ሺ3.3ሻ 

We could rewrite equation (3.3) using Bayes theorem as below, 

ெ஺௉ݕ ൌ ݔܽ݉݃ݎܽ
௬೔ є ௒

ܲሺݔଵ, ,ଶݔ … ௜ሻݕ௜ሻ ܲሺݕ | ௡ݔ
ܲሺݔଵ, ,ଶݔ … ௡ሻݔ

 

As this is the maximization problem we could remove the denominator, 

hence, 

ெ஺௉ݕ ൌ ௬೔ є ௒ݔܽ݉݃ݎܽ  ܲሺݔଵ, ,ଶݔ …  ௜ሻݕ௜ሻ ܲሺݕ | ௡ݔ   ሺ3.4ሻ 

As we assume that all attributes of x are independent to each other, hence 

we could rewrite equation 3.4 as below, 

ெ஺௉ݕ ൌ ௬೔ є ௒ݔܽ݉݃ݎܽ  ܲሺݕ௜ሻ∏ ܲሺݔ௞|ݕ௜ሻ௡
௞ୀଵ       ሺ3.5ሻ 

As features vectors are in continuous form, this dissertation follows 

common Gaussian approach by estimating mean and standard deviation 

for each combination of xk and yi to calculate the P(xk|yi). The naïve Bayes 

classifier is very simple model to implement and it requires very little 

calculation. Hence, this is good candidate for gestures classification on low 

resource devices. 
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3.2.2. Sparse Bayesian Classifier 

Sparse Bayesian classifier or Relevance Vector Machine (RVM) is a binary 

classifier, whose output is probabilistic. For N feature vectors or training 

sets xn with target tn, ሼݔ௡, ௡ሽݐ
ܰ

݊ ൌ 1 , the classification problem is learning a 

function f so that features vector xn will correctly map onto the correct 

class tn. The probability of xn to correctly classify tn is given by ߪሺݕ௡ሻ ൌ

1/ሺ1 ൅ ݁ି௬೙ ሻ, where yn = f(xn). 

And the function f is define as, 

݂ሺݔ௡ሻ ൌ  ෍ ௡ሻݔ௠ሺ׎௠ݓ ൅ ݓ଴

ெ

௠ୀଵ

 

Where, M < N, w is weight, w0 is bias term and ߔm(xm) is kernel function. 

This dissertation uses the Gaussian kernel with width 1. 

The classification process of RVM use Bernoulli likelihood and sigmoid link 

function to calculate the P(t|x). Hence, the likelihood is given by, 

ܲሺݓ|ݐሻ ൌ  ∏ ;௡ݔሺݕሼߪ ሻሽ௧೙  ሾ1ݓ െ ሻሽሿଵି௧೙ேݓ;௡ݔሺݕሼߪ
௡ୀଵ        ሺ3.6ሻ 

Where, target tn Є {0.1} and w is the weights vector. This process further 

follows the Laplace approximation procedure similar to MacKay (1992). 

The detail of the model is explained in Tipping (2001) and online adaptive 

training procedure in Tipping and Faul (2003). The major advantages of 

RVM are sparse solution i.e. a lower number of kernel points and 

probabilistic output. The sparse nature of the model means it requires less 

calculation and probabilistic output means we could in future supply this 

output as input to other systems if needed. 
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3.2.3. Multi-Layer Perceptron 

Artificial Neural Networks (ANNs) are inspired by the observation that 

biological learning systems are build by complex webs of interconnected 

neurons (Mitchell 1997). Multi-layer perceptrons trained using error back-

propagation algorithm are good for high dimensional non-linear area 

classification problem. A typical example of multi-layer perceptron with 2 

layers and one hidden layer is shown below. 

 

Figure 3.3: An example of 2-layers perceptron with one hidden layer.  

 

The output of a node on ANNs is represented by, 

௝ݔ ൌ  ∑ ௜ݔ ௜௝ݓ ൅ ݓ଴
௡
௜ୀଵ    ሺ3.7ሻ 

Where, xj represent the output of the node, wij is the connection weight 

between input xi node to output xj node of forward layer and w0 is the bias 

term. 

The weight update rule using error back propagation algorithm is, 

௜௝ݓ  ൌ ௜௝ݓ  ൅ ߟ  כ  ∆௝ כ  ௜   (3.8)ݔ
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Where, wij is the connection weight between input xi to xj node of forward 

layer and ∆j is the summation of all errors caused by connection form jth 

node to next layer’s k nodes. However ∆j is different for output layer and 

hidden layers, 

For output layer, 

∆j ൌ  g’ሺinሻ * ሺTarget – Outputሻ 

While for non output layers, 

∆j ൌ  g’ሺinሻ * ∑ ∆௞௞ כ  ௝௞ݓ 

g’ is derivative of the activation function g and ‘in’ represented the output 

of the node. This dissertation uses Mean Square Error (MSE) for error 

measurement. MLP with just 2 layers of weights are capable of 

approximating any continuous function (Bishop 1995), hence this 

dissertation will also experiment with MLP. 

3.2.4. Radial Basis Function 

Radial basis function (RBF) performs the exact interpolation of a set of 

points in a multi-dimensional space (Powell 1987). 

 

Figure 3.4: An example of RBF. 
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RBFs function are represented as below, 

݂ሺݔሻ  ൌ   ଴ݓ   ൅ ∑ ݔ || ሺߔ ௝ݓ െ ௝ ||ሻ௄ݔ
௝ୀଵ       ሺ3.9ሻ 

Where, w0 is the bias term, K is number of kernels, xj is a kernel point, x is 

a data point and ߶ is kernel function. If there is N number of data then K 

should be less than or equal to N. This dissertation uses k-means 

algorithm to find the kernel points and the Guassian kernel function. The 

values of weights (w) are approximated using inverse of ߶  matrix  and 

multiplying with targets of training samples. RBF is very fast to train, it 

also uses only a single hidden layer, which makes it less complex. 

3.2.5. Support Vector Machine 

Support Vector Machine (SVM) is the most popular classification algorithm 

of machine learning. It is developed by Vapnik (1979) and popularized by 

Schölkopf(1997), Vapnik (1998) and Burges (1998). SVM perform very well 

especially in high dimension data. As SVB first transfer the data from non-

linearly separable data to linearly separable hyperplane then finds the 

classification boundary with equal distance from the both classes. More 

detail of the SVM can be found on Vapnik (1998). However, a brief 

description is defined here. 

For the two class, c Є {-1, 1}, classification problem using supervised 

learning method and the training set {xi, ci} for xi Є Rn, x is feature vector 

and R is n dimension hyperplane, there exist a following equation, 

ሺݓ. ௜ݔ ൅  ܾሻܿ௜ ൒   ݅׊              0     ሺ3.10ሻ 

Where, w is the weight matrix and b is bias term.  
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4. Experiments and Results 

The results presented below were taken as average of 25 repeats using 5-

fold cross-validation. The used codes for these experiments were 

implemented using MATLAB 7.8 (R2009a) code and self written except 

RVM and SVM libraries. The experiments were executed on normal home 

use P4 personal computer with a 2.13GHz Intel® processor and 2GB of 

memory. A number of preset parameters were chosen so as to be suitable 

for low resource devices, the values of these preset parameters are 

separately described below along with the rationale behind their choice. 

4.1 Description of Data 

The experiments made use of 9 single hand gestures, they were: (1) bye, (2) 

come, (3) down, (4) go, (5) good luck, (6) left, (7) right, (8) up, and (9) 

victory. Sample tMHI and MGO for these gestures are shown in figure 4.1. 

 

     4 
Experiments 
and Results 
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Bye tMHI Bye MGO 

 

Come tMHI Come MGO 

Down tMHI Down MGO 

 

Go tMHI Go MGO 

Good Luck 
tMHI 

Good Luck 
MGO 

 

Left tMHI Left MGO 

Right tMHI 
 

Right MGO 

 

Up tMHI Up MGO 

Victory 
tMHI 

 

Victory MGO 

   

 

Figure 4.1: Example tMHI and MGO for the 9 gestures used in experiments. 

 

The data was captured on unrestricted background and lighting condition 

using a laptop webcam at 320x240 pixels resolution and 15 frames per 

second. However, background objects were constant i.e. not moving. Four 

signers are used for experiments; two males and two females. Each signer 

was recorded 3 times for every gesture to give a total of 25 samples for 

each of the 9 gestures. The recording sessions for each signer were spread 

over 3 different times of day and under varying background and lighting 

conditions. The lighting conditions used were normal room lighting at day 

time, natural sunlight and neon tube lighting at night. The speed of the 

hand, body and head movements as well as the spatial location of the 

hand gestures was not controlled. The signers were instructed to allow 
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variations while making the gestures. This is clearly visible from 

observation of the tMHI and MGO images seen in figure 4.1. 

In summary, four signers were used for data collection resulting in 9,500 

hand gesture videos with approximately the same number for each 

gesture.   

4.2 Assumption of Low Resource Device    

In our context a low resource device means a system with a low resolution 

camera, small memory size, and slow processing capacity. The 

experiments were conducted on a relatively powerful desktop computer, 

therefore it was important that usage of memory and processing were 

restricted. This would allow easy transfer of the system to low resource 

devices. With this in mind two very crucial decisions were made regarding 

experiments. First, the MGO images were resized to 80x60 pixels before 

generating the features vector and second, the size of features vector (K) 

was restricted to be less than or equal to 30. Lower sizes of feature vector 

correspond to lower memory and computation resource requirements for 

the models; this made them more viable for low resource devices.  

4.3 Parameters Tuning 

Parameters tuning for any model always requires that very careful 

attention be paid to each variable. This is made more difficult when 

variables of the model are dependent to each other. Moreover, parameters 

tuning is very critical task when comparing the performance of different 

models as the performance of each model for a given problem is usually 

very sensitive to the parameters used. Hence, parameters tuning was done 

in two steps. As a first step the parameters for each model were tuned 

separately. After the parameters for each model had been tuned the 
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experiments were carried out to compare the models with each other. The 

size of the features vector had the single biggest influence in terms of 

performance and processing speed of the models.  

4.3.1. Naïve Bayes 

Naïve Bayes is easiest model to tune of those presented here. One 

important observation was when the number of negative training gestures 

increased the success of positive-positive tests would decrease relative to 

the success of negative-negatives tests, the inverse of this also held when 

the number negative training gestures were decreased. The reason for this 

was the higher prior probability for negative conditions due to higher 

quantity of negative training data. The numbers of positive and negative 

samples in the training data do not reflect the true operating conditions of 

the gesture recognition system. Hence, equal prior probability was used for 

all cases, which means only likelihood probabilities were able to influence 

the results. 

The naïve Bayes classifier’s performance was based on size of features 

vector (K) i.e. the number of features or number of most variant principal 

component used in PCA in this context. Experiments were conducted to 

find the best size for the features vector for the naïve Bayes classifiers.  

Table 4.1 shows the success rate of hand gesture recognition for different 

value of K using the naïve Bayes classifier. It is clearly noticeable that for 

all 9 gestures, the success rate increases with the value of K. This is 

because as number of gestures increases the naïve Bayes model requires 

more features to optimally indentify the range of mean and standard 

deviation to associate them with a particular gesture. However, this does 

not mean that increase in K continuously increase the performance, as 

that will cause over fitting of the model after certain point. Proof of this is 

provide by the fact that the success rates was grater with values of K less 

than 30 when only two gestures were used (ref. table 4.1). 
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From the table 4.1 it is noticeable that left and right gestures are easier to 

recognize than up and down because they involve more movements then 

than up and down gestures, this can be seen in figure 4.1. 

K All gestures Left and 
Right 

gestures 

Up and 
Down 

gestures 

Left and Right 
gestures by one 

signer 

Up and Dow 
gestures by 
one signer 

5 64 88 80 100 89 
6 66 89 87 100 94 
7 68 94 85 100 93 
8 71 95 89 100 92 
9 72 93 95 100 93 
10 72 95 95 100 93 
11 73 95 96 100 92 
12 73 93 96 100 91 
13 75 93 97 99 93 
14 76 93 91 100 93 
15 77 92 92 99 92 
16 78 91 94 99 92 
17 79 90 94 98 91 
18 79 91 96 98 92 
19 80 91 96 97 91 
20 80 91 97 97 90 
21 80 91 97 97 90 
22 80 90 96 97 89 
23 81 89 96 97 88 
24 81 89 96 97 88 
25 81 88 96 97 87 
26 81 87 96 96 87 
27 82 87 96 96 85 
28 82 86 95 97 86 
29 82 86 95 97 85 
30 82 86 95 96 85 

 

Table 4.1: Success rate of hand gesture recognition using naïve Bayes 
classifier for K equal to 5 to 30 have been listed for different combinations of 

gestures. 

 

It might be interesting to look at how values of K greater than 30 would 

affect the success rates but this was not explored due to the time 

limitation for this research and the small devices assumption. For further 

experiments K equal to 27 was used for naïve Bayes classifier because this 

value gave the best results for all singers. However, K equal to 13 was used 

for single signer hand gestures recognition. 
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4.3.2 Sparse Bayesian Classifier 

A library for sparse Bayesian classifier was used from Tipping (2009), 

which was based on Tipping (2001) and Tipping and Faul (2003). Different 

values for sparseness of the model and basis width were tried but the 

default values—70% for sparseness of the model and 0.05 for basis 

width—appeared to be optimal for the task i.e. there no significant 

improvement on RVM model with different values of the mentioned 

parameters.   

K All gestures Left and 
Right 
gestures 

Up and 
Down 
gestures 

Left and Right 
gestures by 
single signer 

Up and Dow 
gestures by  
single singer 

 5 50 49 48 46 48 
 6 50 49 48 46 48 
 7 50 49 48 46 48 
 8 50 49 48 46 48 
 9 50 49 48 46 48 
10 50 49 48 46 48 
11 50 49 48 46 48 
12 50 49 48 46 48 
13 50 49 48 46 48 
14 50 49 48 46 48 
15 50 49 48 46 48 
16 50 49 48 46 48 
17 50 49 48 46 48 
18 50 49 48 46 48 
19 50 49 48 46 48 
20 50 49 48 46 48 
21 50 49 48 46 48 
22 50 49 48 46 48 
23 50 49 48 46 48 
24 50 49 48 46 48 
25 50 49 48 46 48 
26 50 49 48 46 48 
27 50 49 48 46 48 
28 50 49 48 46 48 
29 50 49 48 46 48 
30 50 49 48 46 48 

 

Table 4.2: Success rate of hand gesture recognition using sparse Bayesian 
classifier for K equal to 5 to 30 have been listed for different combinations of 

gestures. 

Table 4.2 shows the success rates for different value of K using RVM. It is 

clearly noticeable that K between 5 and 30 does not affect the performance 

of the RVM. More importantly, when all 9 gestures by all four signers were 
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used the success rate was slightly higher than when only 2 of the gestures 

or only a single signer were used. The success rate of RVM was lower than 

naïve Bayes, this has been discussed separately below. For further 

experiments with RVM a value of 5 was used for K. 

4.3.3 Multi-Layer Perceptron 

In this problem experiments show that a learning rate of 0.05 with 

momentum of 0.005 (10% of the learning rate) and approximately 400 

iterations give the best results for MLP. However, it was observed that 

increases in the size of the features vector (i.e. number of input variables) 

increases the number of required iterations and causes the error rate to 

fluctuate. This is because the search space for optimum weights increases 

along with number of dimensions of the input features vector. This is 

because as the number of dimensions increases there is a larger area to 

search and more chances to get stuck in local optima. 

Three layered MLP with one hidden layer was seen to give the best 

performance with no benefit being seen from additional hidden layers. The 

choice of the value of K and the number of hidden nodes was most difficult 

because both were highly dependent. For each value of K between 5 and 

30, experiments were conducted with 3 to 30 hidden nodes. It would be 

unwise to present such a big table here so the results of the experiments 

will be briefly described instead. In all combinations of K and hidden nodes 

success rate was greater than 55. For all K with more than 6 hidden nodes 

success rate was greater than 65 and success rate was within the range of 

65 to 73. Based on the experiments it was decided to use K equal to 8 and 

12 hidden nodes. The success rate for the chosen combination was 72. 

Though the highest success rate of 73 was seen with 4 more hidden nodes 

it was decided to use the lower number based on the assumption of a low 

resource device.       
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4.3.4 Radial Basis Function 

RBF has less numbers of parameters to tune than MLP. The most 

important parameter is the choice of kernel function, the number of 

kernels and their values. K-mean clustering was used to calculate the 

values for the kernels.   

To take the decision on the value of K and number of kernels, for each 

value of K between 5 and 30 experiments were carried out with between 3 

and 30 kernels. As before it would be unwise to present such a big table 

here. Hence only the results of the experiments will be briefly described 

here. The highest successes rate was 86 with K equal to 27 or more and 

the number kernels equal to 15 or more. Hence, for the further 

experiments with RBF, K equal to 27 and 15 kernels was used. 

4.3.5 Support Vector Machine 

MATLAB’s SVM library had been used to test the SVM model. Over the 

linear, quadratic, polynomial and MLP, RBF as kernel function had 

performed the better in case of this dissertation. 

Table 4.3 shows the success rate of hand gesture recognition for different 

values of K using SVM. It is clearly noticeable that effect of changes in K 

between 5 and 30 is significant. Importantly, the value of K between 5 and 

8 performs better than higher values of K. As expected the recognition rate 

for single singers is better than when using all four signers. For further 

experiments K equal to 6 was used for SVM. 
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K All 
gestures 

Left and 
Right 
gestures 

Up and 
Down 
gestures 

Left and Right 
gestures by one 
signer 

Up and Dow 
gestures by 
one signer 

 5 53 54 66 67 55 
 6 63 58 64 65 55 
 7 62 58 62 65 54 
 8 60 55 60 60 53 
 9 58 54 57 55 53 
10 56 53 56 54 52 
11 54 52 55 54 53 
12 53 51 55 54 52 
13 52 51 54 54 52 
14 52 51 54 54 52 
15 51 50 53 54 52 
16 51 51 53 54 52 
17 51 51 53 54 52 
18 50 50 53 54 52 
19 50 50 53 54 52 
20 50 50 52 54 52 
21 50 50 52 54 52 
22 50 50 52 54 52 
23 50 51 52 54 52 
24 50 51 52 54 52 
25 50 50 52 54 52 
26 50 51 52 54 52 
27 50 51 52 54 52 
28 50 50 52 54 52 
29 50 50 52 54 52 
30 50 50 52 54 52 

 

Table 4.3: Success rate of hand gesture recognition using sparse SVM for K 
equal to 5 to 30 have been listed for different combinations of gestures. 

4.4 Results 

In this section, the results of the experiments have been presented. 

Descriptions of the research environment and data have been provided on 

section 4.1. Implication of the experiments results have been described in 

section 5 separately.  

4.4.1 Single Signer Hand Gestures Recognition 

The success rates (as percentages) of the hand gestures recognition for a 

single signer are shown in table 4.4.  
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 RBF MLP NB SVM RVM 
Bye 85 78 92 60 50 
Come 98 86 94 79 50 
Down 100 85 87 53 50 
Go 87 72 91 66 50 
Good Luck 97 76 94 53 50 
Left 96 76 94 55 50 
Right 100 95 100 56 50 
Up 98 79 92 54 50 
Victory 91 74 94 57 50 
All 
gestures 

94.67 80.11 93.11 59.22 50 

 

Table 4.4: Success rates of single signer hand gestures recognition for 
different methods. 

 

RBF outperforms the other methods for single signer hand gesture 

recognition. However, naïve Bayes classifier success rate of 93.11 on all 

gestures is only slightly less than the 94.67 success rate of the RBF. 

Moreover, NB outperforms RBF in cases of bye, go and victory gestures. 

RVM is not able to discriminate the single signer hand gestures as there 

are 50% positive and 50% negative test cases. SVM’s overall success rate 

of 59.22 is not at all impressive even when compared to MLP, as MLP’s 

overall success rate is 80.11. 

The above experiments show that even the simplest algorithm (NB) could 

outperform the most advanced and complex algorithm (SVM). This clearly 

indicates that none of the algorithms are superior over others in all case—

performance is problem specific.  

4.4.2 Four Signers Hand Gestures Recognition 

The success rates (in percentages) of the hand gestures recognition using 

data from all four signers is shown in table 4.5. 
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 RBF MLP NB SVM RVM 
Bye 75 59 84 62 50 
Come 81 73 80 77 50 
Down 88 75 89 77 50 
Go 79 61 73 64 50 
Good Luck 89 72 81 62 50 
Left 87 68 84 67 50 
Right 95 76 88 81 50 
Up 91 79 82 68 50 
Victory 80 67 70 58 50 
All 
gestures 

85.00 70.00 81.22 68.44 50 

 

Table 4.5: Success rates of four signers hand gestures recognition for 
different methods. 

When data is used from all four signers, RBF and NB successfully classify 

85% and 81.22% of the hand gestures respectively. However, differences in 

the success rate between NB and RBF is higher than in the single signer 

case. Again, NB outperforms RBF in cases of the bye and down gestures. 

RVM is still not able to discriminate the hand gestures when four signers 

are used as there are still 50% positive and 50% negative test cases. 

Importantly, SVM’s overall success rate of 68.44 is higher than the 59.22 

success rate in the single signer case, which clearly indicates that SVM 

performs better in higher dimension problems. Similar with RBF, MLP’s 

success rate is decreased by approximately 10%. 

4.4.3 Effect of Training Size 

The size of training samples has crucial role in the implementation of all 

methods because in many cases collecting samples data is not only time 

consuming but is costly as well. Also, in supervised learning case such as 

this the labeling of training data is a tedious manual job. Hence the 

comparison of the success rate with various amounts of training data is 

important when comparing the different methods. 
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  RBF MLP NB SVM RVM 
200 (100 
positives 
and 100 
negatives) 

Bye 76 58 84 61 50 
Come 81 72 80 77 50 
Down 88 75 89 76 50 
Go 79 59 73 64 50 
Good Luck 88 73 82 62 50 
Left 87 68 81 67 50 
Right 95 75 90 81 50 
Up 90 80 80 68 50 
Victory 81 64 69 59 50 
All 85.00 69.33 80.89 68.33 50 

       
100 (50 
positives 
and 50 
negatives) 

Bye 72 57 83 65 50 
Come 79 74 77 69 50 
Down 87 71 86 69 50 
Go 76 57 67 57 50 
Good Luck 83 70 78 57 50 
Left 83 64 80 65 50 
Right 94 75 89 70 50 
Up 84 75 75 56 50 
Victory 75 64 73 63 50 
All 81.44 67.44 78.67 63.44 50 

       
50 (25 
positives 
and 25 
negatives) 

Bye 71 51 80 66 50 
Come 75 75 74 70 50 
Down 81 68 75 67 50 
Go 78 53 64 63 50 
Good Luck 80 70 75 59 50 
Left 75 57 84 65 50 
Right 95 73 79 75 50 
Up 74 72 77 50 50 
Victory 71 63 74 65 50 
All 77.78 64.67 75.78 64.44 50 

       
30 (15 
positives 
and 15 
negatives) 

Bye 61 60 75 57 50 
Come 58 73 74 73 50 
Down 71 66 67 70 50 
Go 81 51 53 60 50 
Good Luck 75 69 66 61 50 
Left 70 49 77 55 50 
Right 96 74 79 63 50 
Up 73 65 72 50 50 
Victory 71 53 71 56 50 
All 72.89 62.22 70.44 60.56 50 

 

 Table 4.6: Success rates of hand gestures recognition using different 
methods with 200, 100, 50 and 30 training sets for each gesture. There were 

50% positive and 50% negative training samples in each case. 

 

From table 4.6 it is clear that the success rates increase along with 

training data set size for each method except in the case of RVM. However, 
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RBF’s success rate varies most while MLP’s success rate varies less. When 

training size increased from 30 to 200 RBF’s success rate increases by 

12% and MLP’s by 7% approximately. This clearly indicates that MLP 

could train using a smaller training set than RBF. 

4.4.4 Training and Testing Duration 

As this dissertation is aiming for real-time hand gestures recognition for 

small devices a comparison of processing time is essential. However, 

training time is also important because longer time always consume more 

resources.  

 RBF MLP NB SVM RVM 
450 training 
sets time (sec) 

812.71 824.25 806.68 799.91 805.68 

950 training 
sets time (sec) 

1106.65 1114.66 1107.99 1106.63 1106.52 

 

Table 4.7: Training time required for different methods in seconds, which also 
including 5-fold cross-validation. 

The training time shown in table 4.7 includes MHI and MGO calculation, 

PCA for features extraction as well as 5-fold cross validation. From the 

experiment results shown in table 4.7 it is clear that the required training 

time for all methods is less than 20 minutes even with 950 hand gestures 

videos. The differences between the training times required for all methods 

are less than 30 seconds. From the observation of training time with 450 

and 950 hand gestures, it is clear that training time is not linear with 

number of gestures used in training. 
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  RBF MLP NB SVM RVM 
MHI 
update 
time (sec) 

0.00370332 0.00370332 0.00370332 0.00370332 0.00370332 

MGO 
calculation 
(sec) 

0.0564 0.0564 0.0564 0.0564 0.0564 

Features 
extraction 

0.000129 0.000129 0.000129 0.000129 0.000129 

1 gesture 
testing 
time (sec) 

0.000039823 0.00000104292 0.00014070796 0.0000057522 0.000000428849 

Total (sec) 0.060272143 0.06023336292 0.06037302796 0.0602380722 0.060232748849 
15 frames 
per sec 

0.904082145 0.9035004438 0.9055954194 0.903571083 0.903491232735 

 

Table 4.8:  Processing time required for different methods in seconds. 

 

If the system is to run in real-time then processing time for gesture 

classification becomes much more important than training. As the system 

under discussion is a template based features extraction system it would 

be possible to continuously update a single tMHI. This would mean that to 

process each new video frame it would only be required to do the following 

jobs: (1) update the tHMI with new arrival frame, (2) calculate the MGO, (3) 

extract the features from the MGO using PCA and (4) classifying the 

gesture. 

From the results of above experiments it can be seen that although the 

system could be implemented in real-time using a PC with a Core 2 Duo 

2.13GHz processor it might not be feasible to implement in low resources 

devices as is. From the table 4.8, it is clearly noticeable that approximately 

94% of the processing time is consumed by the MGO calculation. Hence 

we might look for an alternative to MGO calculation or at continuous MGO 

calculation in a similar way to tMHI. The reasons for the long processing 

time and how it could be improved in an implementation for low resource 

devices have been separately discussed in section 5.1.  
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5. Discussion and Conclusion 

5.1. Discussion 

SVM is a state-of-the-art classifier, which outperforms the other methods 

in most of the problems and is useful in all kinds of problems and areas. 

RVM is another state-of-the-art method whose results are comparable with 

SVM. Moreover, the probabilistic output (posterior probability) and sparse 

solution of RVM makes it attractive over SVM. Therefore the highly 

uncompetitive results seen here for SVM and RVM when compared to RBF 

and NB is surprising and warrants further investigation on the 

implementation of SVM and RVM. For this dissertation the SVM library 

from MATLAB and RVM library from the Tipping (2009) were used. These 

implementations are considered reliable as evidenced by the similar 

results obtained by Wong and Cipolla (2005) in their experiment using the 

tMHI and MGO. However, Wong and Cipolla (2005) further improved the 

50% success rate of hand gestures recognition using adaptive online 
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learning, which had not been done in this dissertation as it was not 

considered compatible with the goal of suitability for low resource devices.  

SVM maps non-linear boundaries to linear ones then maximizes the 

decision boundary’s distance with two groups. That is the reason why SVM 

works better in high dimensional problems. The video frames were reduced 

by 75%, which also reduced the dimensions of the features vector. This 

gives one reason why SVM was unable to perform as expected. For a  given 

range of values for features (value of MGO in each pixels), SVM’s kernels 

(also called support vectors) would be closer in lower dimension than they 

would be in higher dimensions, hence generally the distance of the 

boundary with different groups will be lesser, this causes poor 

generalization. 

Though it is claimed that RVM usually gives results comparable to SVM in 

this case SVM correctly classified 68.44% of hand gestures while RVM 

managed only 50% (i.e. unable to discriminate for two class problem). As 

lesser number of samples and only four singers were used hence it might 

be the case that as RVM generally uses less kernels (sparse solution) it is 

less desirable in under sampled and hard to generalize problems (Chanel, 

Kierkels, Soleymani et al 2009). Another strong reason that spatial 

location of the hand gestures was not controlled and all signers had 

different physical characteristics (i.e. different size and shape of hands). It 

is also the case that the sample size was not large. This made estimation of 

the prior as well as likelihood probabilities poorer, which adversely affected 

the performance of the RVM. 

Body movements, lighting conditions and movements of the background 

were not strictly controlled in these experiments. This is easily noticeable 

from 5 samples MGO images in Figure 5.1 for bye gesture using the same 

signer in the same location and recorded at the same time of day. RBF 

tends to perform better than MLP on noise data because RBF kernels do 

local approximations, where as MLP does global approximations, this is 

likely the reason why RBF performs better than MLP in this problem (Alejo, 

Garcia, Sotoca et el 2007). 
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Naïve Bayes is very simple to implement but one of the most effective 

algorithms of inductive learning. The performance of NB on hand gesture 

recognition is surprising here. It correctly classifies 81.22% of the hand 

gestures; this is approximately 13% more than SVM, one of the most 

complex and best ML algorithms. That the conditional independence 

assumption is rarely true in real time is major reason for its surprising 

performance, as local dependence of a node among each class and local 

dependencies of all nodes together, consistently or inconsistently play a 

major role. NB performs better when dependences are distributed evenly 

among classes or when dependencies cancel each other out (Zhang 2005). 

  

  

 

 
   

Figure 5.1: Sample MGO of Bye gestures by one singer 

 

It is also worth mentioning here that for RBF, SVM, RVM and NB the 

optimum solution was found most of the time and that the error rate was 

consistent. In case of MLP however it was not able to find the optimum 

solution each time and the error rate was also not consistent, this was due 
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to the fact that the search space for the optimum solution increases with 

number of nodes in network as there are more and more chances to get 

stuck in local optima. The error rate for RBF, SVM and RVM also 

fluctuated with changing parameters values but NB use to highly 

consistence than other methods in this regard. 

Although RBF and NB performed best they both required a much greater 

number of features than SVM. Also MLP require more features then SVM 

but still a lot less than RBF and NB. However, the increased performance 

given by greater numbers of feature for both RBF and NB dropped off after 

the features vector size passed 15. Hence, if the sensitivity of gestures 

recognition system is not very critical then the processing complexity of 

RBF and NB could be reduced by decreasing the size of features vector and 

sacrificing some accuracy in the classification rate. 

The major objective of this dissertation is to develop a technique suitable 

for a real-time hand gestures recognition system for low resource devices 

but approximately 90% processing time required (ref. table 4.8; 

approximately 0.9 seconds processing time required each second) for all 

used methods even in personal computer is counterintuitive. It is easy to 

see from table 4.8 that MGO calculation alone consumes 93.5% of the 

required processing time. That is because the project was implemented in 

MATLAB which is not a suitable environment for low resource devices. As 

when similar method implemented by Wong and Cipolla (2005) in C++, the 

whole features extraction method took only 34.3 milliseconds,  while in 

our MATLAB implementation only MGO extraction took 56.4 milliseconds. 

Hence, it is supposed that all the methods could be implemented more 

efficiently for use in real-time on low resource devices. 

Hand gestures recognition is hot research topic with one and half decades 

of academic as well as industrial research. So far none of the systems has 

got a 100% success result in complex hand gestures recognition with a 

non-restricted environment. Does this mean we could never achieve 100% 

success rate? After going through all the experiments described here I 

strongly believe that we must need to look back on how biological vision 
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system works. Biological systems always outperform all artificial ones and 

are the best source for inspiration.    

As pointed out by Wang, Zhang and Dai (2007), according to bionic view 

effective tracking of the object of interest is foremost important to the 

recognition of gestures, not the understanding of surrounding 

environment. Hence, I would like to argue that to build a robust hand 

gestures recognition system tracking of the hand is very important. When 

hand tracking is not used it is not possible to distinguish the movements 

of clothes, other body parts and background objects from the movement of 

the hand. Hence, no matter how much the features extraction and 

classification methods are improved we could not get robust results 

without good hand tracking.  

One can argue that we can learn from the noise and that this is what AI 

aims for. Any algorithm can only learn if patterns or dependencies exist in 

the data. The hand gesture could be projected in any spatial location of the 

video frames, this means gestures as well as noise could be in any position 

in the video frame (i.e. there exists no pattern in the spatial location). 

Another possible method is to track hand colour but this is not a good 

solution as discussed in the literature review. In my opinion, tracking of 

the hand based on hand shape along with other cues is the best option for 

robust hand gestures recognition. 

The argument above might suggest that 3D models are superior to view 

based hand gestures recognition models due to the fact that all 3D hand 

gestures recognition models first track the hand before representing it in 

3D. However, I would like to make clear that I am only arguing for tracking 

of the hand i.e. tracking of object of interest in order to overcome noise. 

View based methods are important and a good first choice for real-time 

implementation due to processing advantage on 2D images over the 

greater complexity of processing in 3D models. For this reason view based 

approaches are rather important for low resources devices. Also, 
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experiments on lateral occipital complex (LOC1) by Kourtzi and Kanwisher 

(2001) suggest that shape of the object is the necessary condition to 

recognize an object, not the depth. 

5.2. Applications of the System 

Hand gesture recognition research is motivated by the many potential 

applications for human-machine interaction. Hand gestures recognition 

would be highly useful for mediating communication between hearing 

impaired and hearing people, instruction of home robots (Sing, Seth and 

Desai 2005), manipulation of virtual objects, computer games and other 

human-machine interactions. Also, many human behaviors are correlated 

with hand gestures, such as the clenched fist signaling confrontation, 

pointing with finger and others. Hence, it could be possible to extend this 

hand gestures methodology to human behavior analysis as well. 

More importantly, this technology could be used for remote machine 

operation where direct human interaction involves high risk, such as land 

mine clearance, rescue, mining and other tasks. And another important 

application is in medical operations where it is important to avoid 

contamination by direct contact. Hence, diverse areas would see a benefit 

from hand gestures recognition technology. 

                                         

1 LOC: lateral occipital complex located on ventral visual pathway played major role 
on object recognition. On the experiment Kourtzi and Kanwisher (2001) found that 
LOC shows the neural adaptation when same shape objects are presented and not 
when different depth objects are show. Further neural adapts (stops or slow down 
firing) when inputs are same and starts firing when inputs are different.  
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5.3. Limitations of the Study 

This research has number of limitations; some are due to the complexity of 

research problem and some are due to time limitation for this research. We 

have outlined major limitations as below. 

1. In the samples collect the signer’s body is slightly moving but 

background objects are constant. Hence, movement of background 

objects would affect the system adversely.  

2. This research is limited to gesture recognition using one hand. This 

will limit the system in which gesture using two hands is required. 

3. The experiment shown in section 4.4.3 shows that hand gesture 

recognition rate increases with the number of training set but it was 

not possible to test with larger training set as most of the hand 

gestures recognition research use to experiments with 

approximately more than three or four thousands hand gestures. 

4. It would be nice to compare the hand gestures recognition rate of a 

signer, which was not included in training of the system. This has 

not been tested because we have neither enough hand gestures as 

mentioned in above limitation no. 3 nor was it possible to more 

signers. Without both more signers and more samples the 

experimental results would not have been meaningful. 

5. Clothes of signer’s are not moving in our samples data but in 

normal usage this could sometimes be the case, for example in 

windy environments. 

6. The system was implemented in MATLAB which allowed quicker 

development times but gave reduced performance. If the system 

were implemented in C++ instead of in MATLAB it would almost 

certainly run faster. 
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5.4. Future Work 

tMHI and MGO approaches looks very promising for hand gestures 

recognition. Though tMHI involves very low processing time, MGO 

calculation involves much more and consumes approximately 94% of the 

time required for the whole method (ref. section 4.4.4). Hence, research 

into continuous MGO update in place of the current approach of fully 

calculating it for each frame would be crucial for real-time implementation 

on low resource devices. 

Another important area for future work would be to find a way of keeping 

repeated motion history on same spatial location without directly replacing 

with recent motion for tMHI as it is now. This would definitely help the 

tMHI and MGO method in those hand gestures where repetition of the 

hand movement is essential. 

For the gesture recognition only the object of interest—the hand in this 

case—is important, neither the movement of the whole body nor the 

environment have any relevance. Hence, an effective hand tracking 

mechanism would be important for robust hand gesture recognition. This 

would allow only the motion of the hand to update the tMHI. Also, it would 

be interesting to see the community network of NB and RBF.  

5.5. Conclusion 

A hand gestures recognition problem using temporal template approach 

was experimented with; tMHI and MGO techniques were used to extract 

the features vector, which were then classified using five of the most 

popular machine learning algorithms. The experiments show encouraging 

results using RBF and NB, with RBF able to correctly classify 94.67% for 

single signer and 85% for multi-signers and NB able to correctly classify 

93.11% for single signer and 81.22% for multi-signers. Hand gesture 

recognition rate was 70% for MLP and 68.44% for SVM, this was far lower 
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than the recognition rates of RBF and NB. A straight forward 

implementation RVM had a highly uncompetitive recognition rate. 

The experiments suggest that RVM does not perform well with noisy data 

and SVM with low dimension data. Similarly MLP is also not a good 

classifier in noisy data due to its global boundary approximation approach. 

However, RBF could perform better even in noisy data as its local 

approximation of the boundary using kernel points provided an advantage, 

this is also another reason why RBF’s performance improves with an 

increase in the number of kernels. 

To implement any system in real-time, handling of noise (background 

objects moving, lighting conditions and others) is very important. Hence, I 

have argued that tracking of the hand is very important to develop the 

robust hand gestures recognition system, which is biologically as well as 

mathematically plausible. 

Though the proposed system consumes the 90% of the resources in 

personal computer this could be easily reduced by 50% by implementing 

the system in C++ as evidenced by table 4.8 and Wong and Cipolla (2005). 

Hence, the proposed system could be implemented in low resource devices. 

However, for the real-time implementation, I would recommend the RBF 

method due to its high success rate and the fact that it could be trained 

using unsupervised method in addition to supervised methods. 

In summary, even though we had not controlled the background, lighting 

condition and signer’s body movement strictly, the success rates seen for 

RBF and NB are comparable to the best methods available. This 

dissertation shows that we could implement simple RBF and NB methods 

for real-time hand gestures recognition on low resource devices and still 

get results as good as the best of the currently available complex methods. 

The current correct classification rate of 85% using RBF and 81.22% using 

NB could be further improved by hand tracking to allow only the object of 

interest to be considered; there is strong evidence that this is what is done 

by the human vision system(Wang, Zhang and Dai 2007).  
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Appendix A: Code 

 

The code for this dissertation had written using MATLAB 7.8 (R2009a) 

version. Code fully utilizes the concept of object orientation methodology 

as well as modular programming concept suited for MATLAB 

programming. Each major function is written in separate file, so that we 

could reutilize those functions easily for later use. However, as code 

follows a kind of inheritance concepts, hence we could also simply call the 

hand gestures recognition using single command from the MATLAB 

command window. Also user could set all desire settings for hand gesture 

recognition using one single command called SetUserOptions, as well as 

using the SetUserOptions.m code file, hence they do not need to visit each 

function to changes the default parameters value. 

The code for tMHI, MGO, PCA, features extraction, Naïve Bayes classifier, 

MLP, RBF and others are self-written by dissertation author. The code for 

this project has been optimized as well as cross tested many-times. 

MATLAB’s SVM library has been used and RVM library has been used 

from the Tipping (2009). 

All functions and variables name are written self-descriptive as much as 

possible. However, the purpose of the input and output parameters, 

variables and functions are separately written before beginning of each 

function and commented in code file itself. 

All used code for this dissertation except SVM and RVM (Tipping 2009) 

have been listed below. 
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A.1 SetUserOptions.m 

% function OPTIONS = SetUserOptions(varargin) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) 2009 Copyright University of Sussex 
%  
% Return the user options for hand gestures experiments. 
%  
% Input: 
%   -varargin: Pairs of key and value to override the default values 
%      
% Output: 
%   -OPTIONS: user options sturcture with data, parameters, and 
experiment 
%   models setting 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
function OPTIONS = SetUserOptions(varargin) 
     
    % Confirm that supplied arguments are must be in pairs 
    if rem(nargin,2) 
      error('Arguments to SetUserOptions should be in pairs of 
property_name and value') 
    end 
    noNewSetting = nargin/2; %Number of new setting 
  
    %Options about training 
    OPTIONS.ExcludeTestingDataOnPCA = 0; %PCA Training and testing 
data together or separately 
     
    %Experiment with saved data in matlab file if LoadNewData = 0 else 
load 
    %using user setting 
    OPTIONS.UseNosOfMostVariantAxes = 5; %Number of most variant axes 
to use to generate training and testing data 
     
    OPTIONS.RepeatExperiment = 25; %Number of time to repeat the 
experiment 
    OPTIONS.SaveResultsToFile = 0; %Save results of experiments to 
file- 0 for default console and 1 for text file 
    OPTIONS.SaveResultsFile = 'ResultFiles.txt'; %Results file name- 
will be only use of the SaveResultsToFile = 1 
    OPTIONS.LoadNewData = 0; %0 if read from saved file else 1 to read 
from video files 
    OPTIONS.SaveData = 1; %Save data to file so that later data 
directly could be load without image processing 
    OPTIONS.TestGestures = {'Bye', 'Come', 'Down', 'Go', 'Good Luck', 
'Left', 'Right', 'Up', 'Victory'}; %Gestures to test 
    %OPTIONS.TestGestures = {'Left', 'Right'}; 
    OPTIONS.ExperimentWithRBF = 1; %Flag value to whether RBF method 
should be used or not for training and testing 
    OPTIONS.ExperimentWithMLP = 1; %Flag value to whether MLP method 
should be used or not for training and testing 
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    OPTIONS.ExperimentWithSVM = 1; %Flag value to whether SVM method 
should be used or not for training and testing 
    OPTIONS.ExperimentWithNB = 1; %Flag value to whether Naive Bayes 
method should be used or not for training and testing 
    OPTIONS.ExperimentWithRVM = 1; %Flag value to whether RVM method 
should be used or not for training and testing 
     
    %Options for root folder/location of the data 
    OPTIONS.RootFolder = 'F:\Thesis\Data'; 
    %Options for the gestures folder for varities of data selection 
    OPTIONS.Locations = {'Anita-Evening', 'Anita-Night','Rudra-
Day','Rudra-Evening','Rajendra-Evening', 'Pushmita-Night'}; 
%Sample/User folders 
    %Number of defined gesture for supervised learning 
    OPTIONS.Gestures = {'Bye', 'Come', 'Down', 'Go', 'Good Luck', 
'Left', 'Right', 'Up', 'Victory'}; % type of gestures 
     
    OPTIONS.DataFileName = 'Data_AnitaRudra'; %file name for data- 
this will be saved in current location 
     
    %Options related video processing to generate the Motion History 
Images 
    %and Motion Gradient Orientations 
    OPTIONS.Delta = 2; %Time in Second, the duration for Motion 
History Images 
    OPTIONS.Frame_Buffer_Size = 4; %Buffer size to calculate the 
frames difference 
    OPTIONS.Use_AVIread = 1; %Option whether to read video using AVI 
(1) or multimedia reader (0) library 
    %Delta_Min/Max use to remove the noise from the Gradient 
Orientation 
    %Images 
    OPTIONS.Delta_Min = 0.05; %Set the MGO to 0 if value of neighbour 
is less than Delta_Min 
    OPTIONS.Delta_Max = 0.5; %Set the MGO to 0 if value of neighbour 
is greater than Delta_Max 
    OPTIONS.Gradient_Epsilon = 0.00089; %Set the MGO to 0 if value of 
X or Y gradient is less than Gradient_Epsilon 
     
    %Options for the size of Input vector/data 
    OPTIONS.MGO_Width = 200; %Resize frame's width size 
    OPTIONS.MGO_Height = 200; %Resize frame's height size 
    OPTIONS.MGOImages_Scale = 0.25; %Resize frame's size in scale by 
maintaining aspect ratio 
     
    %Options for research methodologies and error calculation 
    OPTIONS.KFold = 5; %Number of K-Fold for generalization test- i.e. 
K-Fold cross-validation  
     
    %Options Radial Basis Function 
    OPTIONS.RBF_K = 5; %Number of kernals for RBF 
     
    %Options Multi-Layer Perceptron 
    OPTIONS.Layers = [OPTIONS.UseNosOfMostVariantAxes 5 1]; %Number of 
nodes per dimension- i.e. represent the numbers of layers as well as 
number of nodes per layer 
    OPTIONS.LearningRate = 0.05; %Learning rate 
    OPTIONS.MomentumWeight = 0.005; %Momentum weight 
    OPTIONS.MinimumMSE = 0.005; %Mean Square Error value to stop the 
MLP training 
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    OPTIONS.Max_Epochs = 400; %Number of maximum iteration allowed for 
MLP training 
     
    %RVM parameter setting 
    OPTIONS.Likelihood = 'Bernoulli'; %'Gaussian' 
    OPTIONS.NoiseToSignal = 0.2; 
     
    %Options to optimize the code 
    OPTIONS.One_Eighty_By_PI = 57.2958; %180/PI - use One_Eighty_By_PI 
instead of 180/PI many times 
     
    %Overriding default value by user's paramenters 
    for n=1:noNewSetting 
         
        %Reading the name and value from the paired varargin 
        propertyName    = varargin{(n-1)*2+1};  
        newValue        = varargin{(n-1)*2+2}; 
         
        switch upper(propertyName) 
  
            case 'EXCLUDETESTINGDATAONPCA' 
                OPTIONS.ExcludeTestingDataOnPCA = newValue; 
            case 'USENOSOFMOSTVARIANTAXES' 
                OPTIONS.UseNosOfMostVariantAxes = newValue; 
                OPTIONS.Layers = [OPTIONS.UseNosOfMostVariantAxes 9 
1]; 
            case 'REPEATEXPERIMENT' 
                OPTIONS.RepeatExperiment = newValue; 
            case 'SAVERESULTSTOFILE' 
                OPTIONS.SaveResultsToFile = newValue; 
            case 'SAVERESULTSFILE' 
                OPTIONS.SaveResultsFile = newValue; 
            case 'LOADNEWDATA' 
                OPTIONS.LoadNewData = newValue; 
            case 'SAVEDATA' 
                OPTIONS.SaveData = newValue; 
            case 'TESTGESTURES' 
                OPTIONS.TestGestures = newValue; 
            case 'EXPERIMENTWITHRBF' 
                OPTIONS.ExperimentWithRBF = newValue; 
            case 'EXPERIMENTWITHMLP' 
                OPTIONS.ExperimentWithMLP = newValue; 
            case 'EXPERIMENTWITHSVM' 
                OPTIONS.ExperimentWithSVM = newValue; 
            case 'EXPERIMENTWITHNB' 
                OPTIONS.ExperimentWithNB = newValue; 
            case 'EXPERIMENTWITHRVM' 
                OPTIONS.ExperimentWithRVM = newValue; 
            case 'ROOTFOLDER' 
                OPTIONS.RootFolder = newValue; 
            case 'LOCATIONS' 
                OPTIONS.Locations = newValue; 
            case 'GESTURES' 
                OPTIONS.Gestures = newValue; 
            case 'DATAFILENAME' 
                OPTIONS.DataFileName = newValue; 
            case 'DELTA' 
                OPTIONS.Delta = newValue; 
            case 'FRAME_BUFFER_SIZE' 
                OPTIONS.Frame_Buffer_Size = newValue; 
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            case 'USE_AVIREAD' 
                OPTIONS.Use_AVIread = newValue; 
            case 'DELTA_MIN' 
                OPTIONS.Delta_Min = newValue; 
            case 'DELTA_MAX' 
                OPTIONS.Delta_Max = newValue; 
            case 'GRADIENT_EPSILON' 
                OPTIONS.Gradient_Epsilon = newValue; 
            case 'MGO_WIDTH' 
                OPTIONS.MGO_Width = newValue; 
            case 'MGO_HEIGHT' 
                OPTIONS.MGO_Height = newValue; 
            case 'MGOIMAGES_SCALE' 
                OPTIONS.MGOImages_Scale = newValue; 
            case 'KFOLD' 
                OPTIONS.KFold = newValue; 
            case 'RBF_K' 
                OPTIONS.RBF_K = newValue; 
            case 'LAYERS' 
                OPTIONS.Layers = newValue; 
            case 'LEARNINGRATE' 
                OPTIONS.LearningRate = newValue; 
            case 'MOMENTUMWEIGHT' 
                OPTIONS.MomentumWeight = newValue; 
            case 'MINIMUMMSE' 
                OPTIONS.MinimumMSE = newValue; 
            case 'MAX_EPOCHS' 
                OPTIONS.Max_Epochs = newValue; 
            case 'LIKELIHOOD' 
                OPTIONS.Likelihood = newValue; 
            case 'NOISETOSIGNAL' 
                OPTIONS.NoiseToSignal = newValue; 
            case 'ONE_EIGHTY_BY_PI' 
                OPTIONS.One_Eighty_By_PI = newValue; 
            otherwise, 
            error('Unrecognised user option: ''%s''', propertyName) 
        end%END: switch upper(propertyName) 
    end%END: for n=1:noNewSetting 
    
end %END: function OPTIONS = SetUserOptions(varargin) 
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A.2 DataCapture.m 

% function DataCapture(parentFolder) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) 2009 Copyright University of Sussex 
%  
% Use to capture the video training data for the system. 
%  
% Input: 
%   -parentFolder: Parent folder to save the data 
%      
% Output: 
%   -N/A 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
function DataCapture(parentFolder) 
     
    global fileIndex person 
     
    fileIndex = 0; 
    person = 'Pushmita'; 
     
    %Set parameters 
    handGesture = {'Bye' 'Come' 'Down' 'Go' 'Good Luck' 'Left' 'Right' 
'Up' 'Victory'}; % avialable gestures to record for for automatic data 
labeling 
  
    % Creating a video input object. 
    %Input parameters are: device, device Id, format to view do 
following 
    %objinfo = imaqhwinfo('winvideo',1) then objinfo.SupportedFormats 
    videoObjId = videoinput('winvideo',1,'YUY2_320x240'); %input 
parameter should be system compatible 
  
    % Creating a figure window and disabling all default behavior. 
    hFigure = figure('Toolbar','none',... 
       'Menubar', 'none',... 
       'NumberTitle','Off',... 
       'Name','Hand Motion- video recoding'); 
  
    % Create the image object in which we want to display the video 
preview data. 
    vidRes = get(videoObjId, 'VideoResolution'); 
    imWidth = vidRes(1); 
    imHeight = vidRes(2); 
    nBands = get(videoObjId, 'NumberOfBands'); 
    hImage = image( zeros(imHeight, imWidth, nBands) ); 
  
    % Creating list box for the selection of the guesture type 
recoding  
    hListBox = uicontrol('Style', 'listbox',... 
       'String', 'Bye|Come|Down|Go|Good 
Luck|Left|Right|Up|Victory',... 
       'Position', [0 0 100 50]) ; 



Real-time hand gesture recognition for small devices  Page 57 
 

  
    % Creating list box for the selection of the guesture type 
recoding  
    hFileName = uicontrol('Style', 'edit',... 
       'String', '',... 
       'Position', [0 50 100 20]) ; 
  
    % Creating Start Recoding push button 
    uicontrol('String', 'Start Recording',... 
        'Callback', 
{@start_recoding,videoObjId,hImage,parentFolder,handGesture},... 
        'Units','normalized',... 
        'Position',[.18 0 0.15 .07]); 
  
     % Creating Stop Recoding push button 
    uicontrol('String', 'Stop Recoding',... 
        'Callback', {@stop_recoding,videoObjId,hImage},... 
        'Units','normalized',... 
        'Position',[.34 0 0.15 .07]); 
  
    % Creating start preview push button 
    uicontrol('String', 'Start Preview',... 
        'Callback', {@start_preview,videoObjId,hImage},... 
        'Units','normalized',... 
        'Position',[.51 0 0.15 .07]); 
  
    % Creating stop preview push button 
    uicontrol('String', 'Stop Preview',... 
        'Callback', {@stop_preview,videoObjId},... 
        'Units','normalized',... 
        'Position',[.68 0 .15 .07]); 
  
    % Creating close figure push button 
    uicontrol('String', 'Close',... 
        'Callback', {@close_program,videoObjId},... 
        'Units','normalized',... 
        'Position',[0.85 0 .15 .07]); 
  
    % Specifing the size of the axes that contains the image object 
    % so that it displays the image at the right resolution and 
    % centers it in the figure window. 
    figSize = get(hFigure,'Position'); 
    figWidth = figSize(3); 
    figHeight = figSize(4); 
    set(gca,'unit','pixels',... 
            'position',[ ((figWidth - imWidth)/2)...  
                         ((figHeight - imHeight)/2)... 
                           imWidth imHeight ]); 
  
    % Set up the update preview window function. 
    setappdata(hImage,'UpdatePreviewWindowFcn',@frameUpdate); 
  
    setappdata(hImage,'HandleOfListBox',hListBox); 
  
    % Make handle to file name text control available to other 
function. 
    setappdata(hImage,'HandleOfFileName',hFileName); 
      
end 
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function frameUpdate(obj,event,himage) 
    % Example update preview window function. 
  
    % Display image data. 
    set(himage, 'CData', event.Data) 
  
end 
  
function start_preview(obj,event,vid,hImage) 
    preview(vid, hImage); 
     
    global fileIndex person 
     
    fileIndex = fileIndex + 1; 
    fileName = sprintf('%s%d',person,fileIndex); 
     
    % Get handle of filename textbox control uicontrol. 
    handleId = getappdata(hImage,'HandleOfFileName'); 
    % Get index of the selected text item on listbox 
    set(handleId,'String',fileName); 
end 
  
function stop_preview(obj,event,vid) 
    stoppreview(vid); 
end 
  
function start_recoding(obj,event,vid,hImage,parentFolder,handGesture) 
     
    % Get handle of listbox control uicontrol. 
    handleId = getappdata(hImage,'HandleOfListBox'); 
    % Get index of the selected text item on listbox 
    gestureTypeId = get(handleId,'Value'); 
     
    % Get handle of filename textbox control uicontrol. 
    handleId = getappdata(hImage,'HandleOfFileName'); 
    % Get index of the selected text item on listbox 
    name = get(handleId,'String'); 
     
    gestureType = char(handGesture(gestureTypeId)); 
    filename = 
sprintf('%s\\%s\\%s_%s.avi',parentFolder,gestureType,gestureType,name)
; 
     
    %aviFileObject = avifile(filename, 'Colormap',gray(256)); 
    aviFileObject = avifile(filename); 
    aviFileObject.Quality = 50; 
    aviFileObject.Compression = 'None'; %'Indeo3' 'Indeo5' 'Cinepak' 
'MSVC' 'None'; 
     
    vid.LoggingMode = 'disk&memory'; 
    vid.DiskLogger = aviFileObject; 
    vid.TriggerRepeat = Inf; 
     
    start(vid) 
     
end 
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function stop_recoding(obj,event,vid,hImage) 
  
    stop(vid) 
    aviobj = close(vid.DiskLogger); 
    clear aviobj 
    %close(vid.DiskLogger); 
     
    global fileIndex person 
     
    fileIndex = fileIndex + 1; 
    fileName = sprintf('%s%d',person,fileIndex); 
     
    % Get handle of filename textbox control uicontrol. 
    handleId = getappdata(hImage,'HandleOfFileName'); 
    % Get index of the selected text item on listbox 
    set(handleId,'String',fileName); 
     
end 
  
function close_program(obj,event,vid) 
    stoppreview(vid); 
     
    delete(vid) 
    clear vid 
     
    close(gcf) 
end 
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A.3 GestureRecognition.m 

% function [success] GestureRecognition(ExecutionOption) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) 2009 University of Sussex 
%  
% Main entry function for gesture recognition. 
% It experiment according to the setting, eg. full experiment using k-
fold or 
% view of Motion gradient Orientation etc   
%  
% Input: 
%   -ExecutionOption: Option to execute the different method. 1- Test 
MGO, 
%   2- ExperimentGestureRecognition, 3- 
ParamOptimizedGestureRecognition 
%      
% Output: 
%   -success: return 1 if program execute successfully else 0 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
function [success] = GestureRecognition(ExecutionOption) 
    %Default value for success is 0 
    success = 0; 
    warning('off','stats:kmeans:EmptyCluster'); %Switch off off the 
EmptyCluster warning 
     
    %Blocks of code according to options     
    if(ExecutionOption == 1) 
        OPTIONS = SetUserOptions(); %Get user options setting 
        TestMGO('N:\Thesis\Data\Rudra-Day\Bye', OPTIONS); 
         
     
    elseif (ExecutionOption == 2) %ExperimentGestureRecognition 
         
            OPTIONS = SetUserOptions('LoadNewData', 1 ... 
                                  , 'DataFileName', 
'Data_AnitaRudraPushmitaRajendra' ... 
                                  , 'RootFolder', 'N:\Thesis\Data' ... 
                                  , 'Locations', {'Anita-Evening', 
'Anita-Night','Rudra-Day','Rudra-Evening','Rajendra-Evening', 
'Pushmita-Night'} ...   
                                  , 'Gestures', {'Bye', 'Come', 
'Down', 'Go', 'Good Luck', 'Left', 'Right', 'Up', 'Victory'} ... 
                                  , 'TestGestures', {'Bye', 'Come', 
'Down', 'Go', 'Good Luck', 'Left', 'Right', 'Up', 'Victory'} ... 
                                  , 'SaveResultsToFile', 1 ... 
                                  , 'SaveResultsFile', 'Result.txt' 
... 
                                  , 'ExperimentWithRBF', 1 ... 
                                  , 'ExperimentWithMLP', 1 ... 
                                  , 'ExperimentWithSVM', 1 ... 
                                  , 'ExperimentWithNB', 1 ... 
                                  , 'ExperimentWithRVM', 1 ... 
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                                  , 'RepeatExperiment', 2 ... 
                                  , 'UseNosOfMostVariantAxes', 5 ... 
                                 ); %Get user options setting 
  
     
        ExperimentGestureRecognition(OPTIONS); 
         
         
    else %ParamOptimizedGestureRecognition 
         
        UserMessage = 1; 
        K_Start = 5; 
        K_End = 6; 
  
        fid = fopen('Rudra_RF.txt','wt'); % file to same the 
optimization parameters 
  
        OPTIONS = SetUserOptions('LoadNewData', 0 ... 
                                  , 'DataFileName', '' ... 
                                  , 'RootFolder', 'N:\Thesis\Data' ... 
                                  , 'Locations', {'Rudra-Day','Rudra-
Evening'} ...   
                                  , 'Gestures', {'Left', 'Right'} ... 
                                  , 'TestGestures', {'Left', 'Right'} 
... 
                                  , 'SaveResultsToFile', 0 ... 
                                  , 'SaveResultsFile', '' ... 
                                  , 'ExperimentWithRBF', 1 ... 
                                  , 'ExperimentWithMLP', 1 ... 
                                  , 'ExperimentWithSVM', 1 ... 
                                  , 'ExperimentWithNB', 1 ... 
                                  , 'ExperimentWithRVM', 1 ... 
                                  , 'RepeatExperiment', 25 ... 
                                  , 'UseNosOfMostVariantAxes', -1 ... 
                                ); %Get user options setting 
                                  %, 'ExcludeTestingDataOnPCA',1 ... 
        
         
        if(UserMessage) 
            fprintf(1,'\n Data Loading ... '); 
        end 
        [orginalData, group] = LoadData(OPTIONS); 
        if(UserMessage) 
            fprintf(1,'Finished. '); 
        end 
  
        noCols = size(orginalData,2); 
        if(UserMessage) 
            fprintf(1,'\n PCA ... '); 
        end 
        V = GetPrePCA_V_Matrix(orginalData); 
        if(UserMessage) 
            fprintf(1,'Finished. '); 
        end 
  
        for k=K_Start:K_End 
  
            if(UserMessage) 
                fprintf(1,'\n k = %d ... ',k); 
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            end 
  
            %DBFile = sprintf('Data_%d',k); 
            %OPTIONS.DataFileName =  DBFile; 
            OPTIONS.UseNosOfMostVariantAxes =  k; 
            OPTIONS.Layers = [OPTIONS.UseNosOfMostVariantAxes 9 1]; 
  
            data = orginalData * V(:,noCols-
OPTIONS.UseNosOfMostVariantAxes+1:noCols); 
  
            ParamOptimizedGestureRecognition(OPTIONS, fid,data,group) 
  
            %OPTIONS.LoadNewData =  0; 
        end %END: for k=5:30 
        fclose(fid); 
        if(UserMessage) 
            fprintf(1,'\n\n Finished.'); 
        end 
              
    end 
  
    warning('on','stats:kmeans:EmptyCluster'); %Switch on the 
EmptyCluster warning back 
     
    success = 1; % Return true when the function successfully executed 
     
end %END: function [success] = GestureRecognition(ExecutionOption) 
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A.4 ExperimentGestureRecognition.m 

% function ExperimentGestureRecognition(OPTIONS) 
% 
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) 2009 University of Sussex 
%  
% Experiment the gesture recognition using k-fold method for different 
% methodologies and data according to user setting, have a look at  
% SetUserOptions.m 
% 
% Input: 
%   -OPTIONS - Options for the model to test 
%      
% Output: 
%   -Empty 
  
function ExperimentGestureRecognition(OPTIONS) 
     
    %Check if need to save the result on the file 
    if(OPTIONS.SaveResultsToFile) 
        %Open the new file to save the experiments results 
        %Format 
        %Gesture, RBF, SVM, MLP, NB, RVM 
        fid = fopen(OPTIONS.SaveResultsFile,'wt'); 
         
        fprintf(fid,'\t'); 
        if(OPTIONS.ExperimentWithRBF) 
            fprintf(fid,'\tRBF'); 
        end 
        if(OPTIONS.ExperimentWithSVM) 
            fprintf(fid,'\tSVM'); 
        end 
        if(OPTIONS.ExperimentWithMLP) 
            fprintf(fid,'\tMLP'); 
        end 
        if(OPTIONS.ExperimentWithNB) 
            fprintf(fid,'\tNB'); 
        end 
        if(OPTIONS.ExperimentWithRVM) 
            fprintf(fid,'\tRVM'); 
        end 
         
        fprintf(fid,'\n'); 
    end 
     
    %START: Loop experiment for each gesture 
    for iGesture=1:length(OPTIONS.TestGestures) 
        %Load the data for experiment 
        fprintf(1,'\nExperiment %s: load data. ', 
OPTIONS.TestGestures{iGesture}); 
        [Model.Data.Train.Input Model.Data.Train.Group] = 
GetData(OPTIONS.TestGestures{iGesture},OPTIONS); 
        OPTIONS.LoadNewData = 0; 
         
        if(OPTIONS.SaveResultsToFile) 
            fprintf(fid,'%s\t',OPTIONS.TestGestures{iGesture}); 
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        end 
             
        %Experiment the data using RBF and print the error 
        if(OPTIONS.ExperimentWithRBF) 
            fprintf(1,' RBF.'); 
            errorRate = 0; 
            for i=1:OPTIONS.RepeatExperiment 
                errorRate = errorRate + ExperimentWithRBF(Model, 
OPTIONS); 
            end 
            errorRate = errorRate/OPTIONS.RepeatExperiment; 
             
            if(OPTIONS.SaveResultsToFile) 
                fprintf(fid,'\t%3.2f',errorRate); 
            else 
                fprintf(1,' error=%3.2f ',errorRate); 
            end 
        end 
  
        %Experiment the data using SVM and print the error 
        if(OPTIONS.ExperimentWithSVM) 
            fprintf(1,' SVM.'); 
            errorRate = 0; 
            for i=1:OPTIONS.RepeatExperiment 
                errorRate = errorRate + ExperimentWithSVM(Model, 
OPTIONS); 
            end 
            errorRate = errorRate/OPTIONS.RepeatExperiment; 
             
            if(OPTIONS.SaveResultsToFile) 
                fprintf(fid,'\t%3.2f',errorRate); 
            else 
                fprintf(1,' error.=%3.2f ',errorRate); 
            end 
        end 
  
        %Experiment the data using MLP and print the error 
        if(OPTIONS.ExperimentWithMLP) 
            fprintf(1,' MLP.'); 
            errorRate = 0; 
            for i=1:OPTIONS.RepeatExperiment 
                errorRate = errorRate + ExperimentWithMLP(Model, 
OPTIONS); 
            end 
            errorRate = errorRate/OPTIONS.RepeatExperiment; 
             
            if(OPTIONS.SaveResultsToFile) 
                fprintf(fid,'\t%3.2f',errorRate); 
            else 
                fprintf(1,' error=%3.2f ',errorRate); 
            end 
        end 
  
        %Experiment the data using Naive Bayes and print the error 
        if(OPTIONS.ExperimentWithNB) 
            fprintf(1,' NB.'); 
            errorRate = 0; 
            for i=1:OPTIONS.RepeatExperiment 
                errorRate = errorRate + 
ExperimentWithNaiveBayes(Model, OPTIONS); 
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            end 
            errorRate = errorRate/OPTIONS.RepeatExperiment; 
             
            if(OPTIONS.SaveResultsToFile) 
                fprintf(fid,'\t%3.2f',errorRate); 
            else 
                fprintf(1,' error=%3.2f ',errorRate); 
            end 
        end 
  
        %Experiment the data using sparse Bayesian network and print 
the error 
        if(OPTIONS.ExperimentWithRVM) 
            fprintf(1,' RVM.'); 
            errorRate = 0; 
            for i=1:OPTIONS.RepeatExperiment 
                errorRate = errorRate + ExperimentWithRVM(Model, 
OPTIONS); 
            end 
            errorRate = errorRate/OPTIONS.RepeatExperiment; 
             
            if(OPTIONS.SaveResultsToFile) 
                fprintf(fid,'\t%3.2f',errorRate); 
            else 
                fprintf(1,' error=%3.2f ',errorRate); 
            end 
        end 
         
        if(OPTIONS.SaveResultsToFile) 
            fprintf(fid,'\n'); %Close the file handle 
        end 
    end 
    %END: Loop experiment for each gesture 
     
    if(OPTIONS.SaveResultsToFile) 
        %Close the file handle and save the sive 
        fclose(fid); 
    end 
  
end %END: ExperimentGestureRecognition(OPTIONS) 
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A.5 ParamOptimizedGestureRecognition.m 

% function ParamOptimizedGestureRecognition(OPTIONS, fid,data,group) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) 2009 University of Sussex 
%  
% Experiment for parameter optimization of gesture recognition models 
according to user setting, have a look at  
% SetUserOptions.m for detail 
% 
% Input: 
%   -OPTIONS - Options for the model to test 
%   -fid - file handle to write the results 
%   -data - Data input for training and testing 
%   -group - Label of <data> or class of <data> 
% 
% Output: 
%   -Empty: However either results are use to save in file or print to 
%   default console application based on the OPTIONS setting 
  
function ParamOptimizedGestureRecognition(OPTIONS, fid,data,group) 
     
    results = zeros(length(OPTIONS.TestGestures),30); 
    %START: Loop experiment for each gesture 
    for iGesture=1:length(OPTIONS.TestGestures) 
        %Load the data for experiment 
        [Model.Data.Train.Input Model.Data.Train.Group] = 
GetTrainingData(OPTIONS.TestGestures{iGesture}, OPTIONS, data, group); 
             
        %Experiment the data using RBF and print the error 
        errorRate = 0; 
        for i=1:OPTIONS.RepeatExperiment 
            errorRate = errorRate + ExperimentWithRBF(Model, OPTIONS); 
        end 
        errorRate = errorRate/OPTIONS.RepeatExperiment; 
        results(iGesture,1) = errorRate; 
  
  
        %Experiment the data using SVM and print the error 
        errorRate = 0; 
        for i=1:OPTIONS.RepeatExperiment 
            errorRate = errorRate + ExperimentWithSVM(Model, OPTIONS); 
        end 
        errorRate = errorRate/OPTIONS.RepeatExperiment; 
        results(iGesture,2) = errorRate; 
  
  
        %Experiment the data using MLP and print the error 
        errorRate = 0; 
        for i=1:OPTIONS.RepeatExperiment 
            errorRate = errorRate + ExperimentWithMLP(Model, OPTIONS); 
        end 
        errorRate = errorRate/OPTIONS.RepeatExperiment; 
        results(iGesture,3) = errorRate; 
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        %Experiment the data using Naive Bayes and print the error 
        errorRate = 0; 
        for i=1:OPTIONS.RepeatExperiment 
            errorRate = errorRate + ExperimentWithNaiveBayes(Model, 
OPTIONS); 
        end 
        errorRate = errorRate/OPTIONS.RepeatExperiment; 
        results(iGesture,4) = errorRate; 
  
        %Experiment the data using RVM and print the error 
        errorRate = 0; 
        for i=1:OPTIONS.RepeatExperiment 
            errorRate = errorRate + ExperimentWithRVM(Model, OPTIONS); 
        end 
        errorRate = errorRate/OPTIONS.RepeatExperiment; 
        results(iGesture,5) = errorRate; 
  
        %Experiment the data using RBF and print the error 
        for K=3:30 
             
            OPTIONS.RBF_K = K; %Number of kernal for RBF 
             
            errorRate = 0; 
            for i=1:OPTIONS.RepeatExperiment 
                errorRate = errorRate + ExperimentWithRBF(Model, 
OPTIONS); 
            end 
            errorRate = errorRate/OPTIONS.RepeatExperiment; 
            results(iGesture,K) = errorRate; 
        end 
         
        %Experiment the data using MLP and print the error 
        for iHiddenLayer=3:30 
             
            OPTIONS.Layers = [OPTIONS.UseNosOfMostVariantAxes 
iHiddenLayer 1]; 
             
            errorRate = 0; 
            for i=1:OPTIONS.RepeatExperiment 
                errorRate = errorRate + ExperimentWithMLP(Model, 
OPTIONS); 
            end 
            errorRate = errorRate/OPTIONS.RepeatExperiment; 
            results(iGesture,iHiddenLayer) = errorRate; 
        end 
         
    end 
    %END: Loop experiment for each gesture 
     
    totalErrorRate = sum(results); 
    totalErrorRate = totalErrorRate ./length(OPTIONS.TestGestures); 
     
    fprintf(fid,'%d',OPTIONS.UseNosOfMostVariantAxes); 
    for i=1:length(totalErrorRate) 
        fprintf(fid,'\t%3.2f',totalErrorRate(i)); 
    end 
    fprintf(fid,'\n'); 
  
end %END of function  
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A.6 ExperimentWithNaiveBayes.m 

% function [cp] = ExperimentWithNaiveBayes(Model, OPTIONS) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) 2009 University of Sussex 
%  
% Train and test the given MGO images using Gaussian Naive Bayes and 
% return the error rate.   
%  
% Input: 
%   -Model: Model which contains the data and other training info 
% 
%   -OPTIONS:  User options structure with Naive Bayes training 
parameters info 
% 
% Output: 
%   -ErrorRate: Error rate of K-Fold cross-validation 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
function [ErrorRate] = ExperimentWithNaiveBayes(Model, OPTIONS)     
     
    %Dividing data on K-Clusters for K-Fold training 
    indicesKFold = 
crossvalind('Kfold',Model.Data.Train.Group,OPTIONS.KFold); 
    cp = classperf(Model.Data.Train.Group); %Initialize classperf 
structure for error calculation 
  
    %START: Loop for KFold test 
    for i=1:OPTIONS.KFold 
        test = (indicesKFold == i); train = ~test; 
        if(OPTIONS.ExcludeTestingDataOnPCA) 
            [trainingInput testingInput] = 
PCA_TestSeparate(Model.Data.Train.Input(train,:),Model.Data.Train.Inpu
t(test,:),OPTIONS.UseNosOfMostVariantAxes);         
        else 
            trainingInput = Model.Data.Train.Input(train,:); 
            testingInput = Model.Data.Train.Input(test,:); 
        end 
        %Train Input using Naive Bayes 
        GNBModel = trainGaussianNaiveBayes(trainingInput, 
Model.Data.Train.Group(train,:)); 
        %Predict Output using Naive Bayes Model 
        classes = testGaussianNaiveBayes(GNBModel, testingInput); 
  
        classperf(cp,classes,test); %Update the error rate using new 
prediction 
  
    end 
    ErrorRate = cp.ErrorRate; 
  
end 
  
  
% function [GNBModel] = GaussianNaiveBayes(inputs,targets) 
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%  
% Guassian Naive Bayes training routine.   
%  
% Input: 
%   -inputs: Inputs data for training 
% 
%   -targets:  Targets class 
% 
% Output: 
%   -GNBModel: Gaussian Naive Bayes Model which contains the prior 
%   probabilities and means and standerd deviations per group per 
features 
  
function [GNBModel] = trainGaussianNaiveBayes(inputs, targets) 
     
    UniqueClasses = sort(unique(targets)); %Find all unique classes 
    NumberOfClasses = length(UniqueClasses); %Number of unique classes 
    [NumberOfInputs NumberOfFeatures] = size(inputs); %Finding number 
features and training sample size 
     
    Means = zeros(NumberOfClasses,NumberOfFeatures); %Initialize Means 
to hold mean values for unique combination of classes and features  
    StandardDeviation  = zeros(NumberOfClasses,NumberOfFeatures); 
%Initialize StandardDeviation to hold standard deviation values for 
unique combination of classes and features  
    PriorProbabilities = ones(NumberOfClasses,1); %Initialize 
PriorProbabilities to hold Prior probability of each class 
    %We assume that prior probabilities for each class is equal 
    PriorProbabilities = PriorProbabilities .* (1/NumberOfClasses); 
    %Or 
    %PriorProbabilities = Number of each class/NumberOfInputs); 
  
    %START: Loop through all classes 
    for i=1:1:NumberOfClasses 
        selectedClass = ( targets == UniqueClasses(i) ); %Selecting a 
class at a time 
        Means(i,:) = mean(inputs(selectedClass,:)); %Mean for selected 
class, each feature wise 
        StandardDeviation(i,:) = std(inputs(selectedClass,:)); 
%Standard Deviation for selected class, each feature wise     
        %PriorProbabilities(i) = size(inputs(selectedClass,:),1); 
    end 
    %END: Loop through all classes 
    %PriorProbabilities = PriorProbabilities ./size(inputs,1); 
     
    %Zero standard deviation yield problem with logarithmic function 
    %so change that to some default value 
    stdZeros = (StandardDeviation == 0); 
    StandardDeviation(stdZeros) = 0.15; 
     
    %The the training values to model and return, which will be use 
for 
    %prediction 
    GNBModel.UniqueClasses = UniqueClasses; 
    GNBModel.NumberOfClasses = NumberOfClasses; 
    GNBModel.NumberOfFeatures = NumberOfFeatures; 
    GNBModel.PriorProbabilities = PriorProbabilities;  
    GNBModel.Means = Means; 
    GNBModel.StandardDeviation = StandardDeviation; 
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end 
  
% function [results] = testGaussianNaiveBayes(GNBModel, inputs) 
%  
% Predict the output using trained Guassian Naive Bayes Model   
%  
% Input: 
%   -GNBModel:  Gaussian Naive Bayes Trained model 
% 
%   -inputs: Inputs data for testing 
% 
% Output: 
%   -Results: Prediction classes of the inputs 
  
function [results] = testGaussianNaiveBayes(GNBModel, inputs) 
    results = []; 
    %START: Loop through all inputs 
    for iInput=1:size(inputs) 
        %Initialize as well as keep the logarithmic prior 
probabilities 
        %values for all classes 
        probabilities = log(GNBModel.PriorProbabilities); 
        %START: Loop through all classes 
        for iClass=1:GNBModel.NumberOfClasses 
            dblTemp = 0; %Hold the logarithmic sum of Gaussian 
probability of class and feature 
            %START: Loop through all features 
            for iFeature=1:1:GNBModel.NumberOfFeatures  
                %Logarithmic Gaussain Navie Bayes Formula for class 
discrimination  
                %if(DontAdd_2Pi) 
                dblTemp = dblTemp - (inputs(iInput,iFeature)-
GNBModel.Means(iClass,iFeature))^2/(2*GNBModel.StandardDeviation(iClas
s,iFeature)^2)   - log(GNBModel.StandardDeviation(iClass,iFeature)); 
                %else 
                %dblTemp=dblTemp-(inputs(iInput,iFeature)-
GNBModel.Means(iClass,iFeature))^2/(2*GNBModel.StandardDeviation(iClas
s,iFeature)^2)   - 
log(sqrt(2*pi)*GNBModel.StandardDeviation(iClass,iFeature)); 
                %end 
            end 
            %END: Loop through all features 
            probabilities(iClass) = probabilities(iClass) + dblTemp; 
        end 
        %END: Loop through all classes 
        [value index] = max(probabilities); %Select the class with max 
probabilities 
        results = [results ; GNBModel.UniqueClasses(index)]; %Add up 
the prediction output 
    end 
    %END: Loop through all inputs 
end 
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A.7 ExperimentWithMLP.m 

% function [cp] = ExperimentWithMLP(Model, OPTIONS) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) 2009 University of Sussex 
%  
% Train and test the given MGO images using Multi-Layer Perceptron and 
% return the error rate of K-fold cross-validation.   
%  
% Input: 
%   -Model: Model which contains the data and other training info 
% 
%   -OPTIONS:  User options structure with MLP training parameters 
info 
% 
% Output: 
%   -ErrorRate: Error rate of K-Fold test 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
function [ErrorRate] = ExperimentWithMLP(Model, OPTIONS) 
  
    %Dividing data on K-Clusters for K-Fold training 
    indicesKFold = 
crossvalind('Kfold',Model.Data.Train.Group,OPTIONS.KFold); 
    cp = classperf(Model.Data.Train.Group); %Initialize classperf 
structure for error calculation 
     
    %START: Loop for KFold test 
    for i=1:OPTIONS.KFold 
        test = (indicesKFold == i); train = ~test; 
        if(OPTIONS.ExcludeTestingDataOnPCA) 
            [trainingInput testingInput] = 
PCA_TestSeparate(Model.Data.Train.Input(train,:),Model.Data.Train.Inpu
t(test,:),OPTIONS.UseNosOfMostVariantAxes);         
        else 
            trainingInput = Model.Data.Train.Input(train,:); 
            testingInput = Model.Data.Train.Input(test,:); 
        end 
        %Train Input using MLP 
        MLPModel = 
trainMLP(trainingInput,Model.Data.Train.Group(train,:),OPTIONS.Learnin
gRate,OPTIONS.MomentumWeight,OPTIONS.MinimumMSE,OPTIONS.Layers,OPTIONS
.Max_Epochs); 
        %Predict Output using MLP Model 
        classes = classifyMLP(testingInput, OPTIONS.Layers, 
MLPModel.weights); 
        classperf(cp,classes,test); %Update the error rate using new 
prediction 
  
    end 
    %END: Loop for KFold test 
    ErrorRate = cp.ErrorRate; 
     
end 
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% function MLPModel = 
% 
trainMLP(inputs,targets,learningRate,momentumWeight,minimumMSE,layers, 
% maxEpochs) 
%  
% MLP training routine   
%  
% Input: 
%   -inputs: Inputs data for training 
% 
%   -targets:  Targets class 
% 
%   -learningRate:  Learning rate for weights update 
% 
%   -momentumWeight:  Momentum weight to speed up training 
% 
%   -minimumMSE:  Mean Square Error to stop the training  
% 
%   -layers:  MLP structure which includes number of layers and 
numbers of 
%   node. Eg. 8 10 1, means 8 input nodes, 10 hidden nodes and 1 
output 
%   nodes 
% 
%   -maxEpochs:  Maximum epochs allowed for MLP training 
% 
% Output: 
%   -MLPModel: MLP Model which contains the weights, training Mean 
Square 
%   Erro and Number of epoch used for training 
%  
% References: The MLP training code used form the Rudra PK Poudel, 
Neural 
% Network Assignment II 
  
function MLPModel = 
trainMLP(inputs,targets,learningRate,momentumWeight,minimumMSE,layers,
maxEpochs) 
  
[trainingDataCount,inputNodesCount] = size(inputs); 
[targetDataCount,targetNodesCount] = size(targets); 
  
if trainingDataCount ~= targetDataCount  
    
error('BackpropagationTraining:TrainingAndTargetDataLengthMismatch', 
'The number of input vectors and desired ouput vectors do not match'); 
end 
  
if length(layers) < 3  
    error('BackpropagationTraining:InvalidNetworkStructure','The 
network must have at least 3 layers'); 
end 
  
if inputNodesCount ~= layers(1) 
    msg = sprintf('Dimensions of input nodes (%d) does not match with 
numbers of input layer (%d).',inputNodesCount,layers(1)); 
    error('BackpropagationTraining:InvalidInputLayerSize', msg); 
end 
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if targetNodesCount ~= layers(end) 
    msg = sprintf('Dimensions of output nodes (%d) does not match with 
numbers of output layer (%d)',targetNodesCount,layers(end)); 
    error('BackpropagationTraining:InvalidOutLayerSize', msg);     
end 
  
leayersLength = length(layers);   
  
%Initialize the weights matrix for MLP including bias nodes for all 
layers 
weights = cell(leayersLength-1,1); 
for i=1:leayersLength-2         
    weights{i} = [-1 + 2 .* rand(layers(i+1),layers(i)+1); 
zeros(1,layers(i)+1)]; 
end 
weights{end} = -2 + 2 .* rand(layers(end),layers(end-1)+1); 
  
MSE = Inf; %Initialize default MSE to maximum 
epochs = 0; 
  
activation = cell(leayersLength,1); 
activation{1} = [inputs ones(trainingDataCount,1)]; % activation{1} is 
the input + 1 for the bias node activation 
                                                    % activation{1} 
remains the same throught the computation 
for i=2:leayersLength-1 
    activation{i} = ones(trainingDataCount,layers(i)+1); % inner 
layers include a bias node (trainingDataCount-by-Nodes+1)  
end 
activation{end} = ones(trainingDataCount,layers(end)); % no bias node 
at output layer 
  
net = cell(leayersLength-1,1); % one net matrix for each layer 
exclusive input 
for i=1:leayersLength-2; 
    net{i} = ones(trainingDataCount,layers(i+1)+1); % affix bias node  
end 
net{end} = ones(trainingDataCount,layers(end)); 
  
previousDeltaW = cell(leayersLength-1,1); 
sumDeltaW = cell(leayersLength-1,1); 
for i=1:leayersLength-1 
    previousDeltaW{i} = zeros(size(weights{i})); % previousDeltaW 
starts at 0 
    sumDeltaW{i} = zeros(size(weights{i})); 
end     
  
% lowestsse = 999999; 
% bestweights = weights; 
while MSE > minimumMSE && epochs < maxEpochs 
     
    for i=1:leayersLength-1 
        net{i} = activation{i} * weights{i}'; % compute inputs to 
current layer 
         
        if i < leayersLength-1 % inner layers 
            activation{i+1} = [1./(1+exp(-net{i}(:,1:end-1))) 
ones(trainingDataCount,1)]; % for sigmoid 
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            %activation{i+1} = [(net{i}(:,1:end-1)) 
ones(trainingDataCount,1)]; %without sigmoid i.e for linear activation 
function 
        else % output layers 
            activation{i+1} = 1 ./ (1 + exp(-net{i})); 
            for iOutput=1:length(activation{i+1}) 
               if( activation{i+1}(iOutput)>=0.5) 
                   activation{i+1}(iOutput)=1; 
               else 
                   activation{i+1}(iOutput)=0; 
               end 
            end 
        end 
    end 
     
    % calculate sum squared error of all samples 
    err = (targets-activation{end});       % save this for later 
    sse = sum(sum(err.^2)); % sum of the error for all samples, and 
all nodes 
%     if(lowestsse>sse) 
%         lowestsse = sse; 
%         bestweights = weights; 
%     end 
  
    %delta = err .* activation{end} .* (1 - activation{end}); 
    delta = err; 
    for i=leayersLength-1:-1:1 
        sumDeltaW{i} = learningRate * delta' * activation{i}; 
        if i > 1 
            delta = activation{i} .* (1-activation{i}) .* 
(delta*weights{i}); 
            %delta =  (delta*weights{i}); % when there is no 
activation 
            %function 
        end 
    end 
     
    % update the prev_w, weight matrices, epoch count and MSE 
    for i=1:leayersLength-1 
        previousDeltaW{i} = (sumDeltaW{i} ./ trainingDataCount) + 
(momentumWeight * previousDeltaW{i}); 
        weights{i} = weights{i} + previousDeltaW{i}; 
    end    
    epochs = epochs + 1; 
    MSE = sse/(trainingDataCount*targetNodesCount); 
    %MSEPerEpoch(epochs) = MSE; 
     
end 
  
% %printing error 
% axis ( [0 length(MSEPerEpoch) 0 1]); 
% x = 1:1:length(MSEPerEpoch); 
% plot(x,MSEPerEpoch); 
% s=input('Press enter to continue, enter 0 to stop \n'); 
  
% return the trained network 
MLPModel.weights = weights; 
% MLPModel.bestweights = bestweights; 
MLPModel.epochs = epochs; 
MLPModel.MSE = MSE; 
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end 
  
  
% function Results = classifyMLP(inputs,layers, weights) 
%  
% Predict the output using trained MLP Model   
%  
% Input: 
%   -inputs: Inputs data for training 
% 
%   -layers:  MLP structure which includes number of layers and 
numbers of 
%   node. Eg. 8 10 1, means 8 input nodes, 10 hidden nodes and 1 
output 
%   nodes. It should be same as used in training 
% 
%   -weights:  MLP trained weights 
% 
% Output: 
%   -Results: Prediction of the inputs 
  
function Results = classifyMLP(inputs,layers, weights) 
  
[trainingDataCount,inputNodesCount] = size(inputs); 
  
leayersLength = length(layers);   
  
activation = cell(leayersLength,1); 
activation{1} = [inputs ones(trainingDataCount,1)]; % activation{1} is 
the input + 1 for the bias node activation 
                                                    % activation{1} 
remains the same throught the computation 
for i=2:leayersLength-1 
    activation{i} = ones(trainingDataCount,layers(i)+1); % inner 
layers include a bias node (trainingDataCount-by-Nodes+1)  
end 
activation{end} = ones(trainingDataCount,layers(end)); % no bias node 
at output layer 
  
net = cell(leayersLength-1,1); % one net matrix for each layer 
exclusive input 
for i=1:leayersLength-2; 
    net{i} = ones(trainingDataCount,layers(i+1)+1); % affix bias node  
end 
net{end} = ones(trainingDataCount,layers(end)); 
     
for i=1:leayersLength-1 
    net{i} = activation{i} * weights{i}'; % compute inputs to current 
layer 
  
    if i < leayersLength-1 % inner layers 
        activation{i+1} = [1./(1+exp(-net{i}(:,1:end-1))) 
ones(trainingDataCount,1)]; % for sigmoid 
        %activation{i+1} = [(net{i}(:,1:end-1)) 
ones(trainingDataCount,1)]; %without sigmoid i.e for linear activation 
function 
    else % output layers 
        activation{i+1} = 1 ./ (1 + exp(-net{i})); 
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        Results = zeros(length(activation{i+1}),1); 
        for iOutput=1:length(activation{i+1}) 
           if( activation{i+1}(iOutput)>=0.5) 
               Results(iOutput)=1; 
           else 
               Results(iOutput)=0; 
           end 
        end 
    end 
end 
  
%Results = Results'; 
end 
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A.8 ExperimentWithRBF.m 

% function [cp] = ExperimentWithRBF(Model, OPTIONS) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) 2009 University of Sussex 
%  
% Train and test the given MGO images using Radial Basis Function and 
% return the rate using k-fold cross validation.   
%  
% Input: 
%   -Model: Model which contains the data and other training info 
% 
%   -OPTIONS:  User options structure with RBF training parameters 
info 
% 
% Output: 
%   -ErrorRate: Error rate of K-Fold test 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
function [ErrorRate] = ExperimentWithRBF(Model, OPTIONS) 
     
    %Dividing data on K-Clusters for K-Fold training 
    indicesKFold = 
crossvalind('Kfold',Model.Data.Train.Group,OPTIONS.KFold); 
    cp = classperf(Model.Data.Train.Group); %Initialize classperf 
structure for error calculation 
  
    %START: Loop for KFold test 
    for i=1:OPTIONS.KFold 
        test = (indicesKFold == i); train = ~test; 
        if(OPTIONS.ExcludeTestingDataOnPCA) 
            [trainingInput testingInput] = 
PCA_TestSeparate(Model.Data.Train.Input(train,:),Model.Data.Train.Inpu
t(test,:),OPTIONS.UseNosOfMostVariantAxes);         
        else 
            trainingInput = Model.Data.Train.Input(train,:); 
            testingInput = Model.Data.Train.Input(test,:); 
        end 
        %Train Input using RBF 
        RBFModel = 
trainRBF(trainingInput,Model.Data.Train.Group(train,:),OPTIONS.RBF_K); 
        %Predict Output using RBF Model 
        classes = classifyRBF(testingInput,RBFModel.C, 
RBFModel.weights, RBFModel.sigmas); 
        classperf(cp,classes,test); %Update the error rate using new 
prediction 
  
    end 
    %END: Loop for KFold test 
     
    ErrorRate = cp.ErrorRate; 
     
end 
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% function RBFModel = trainRBF(inputs,targets, K) 
%  
% RBF training routine   
%  
% Input: 
%   -inputs: Inputs data for training 
% 
%   -targets:  Targets class 
% 
%   -K:  Number of kernels 
% 
% Output: 
%   -RBFModel: RBF Model which contains the weights, centers (C), 
sigma and 
%   K 
%  
% References: The RBF training code used form the Rudra PK Poudel, 
Neural 
% Network Assignment II 
  
function RBFModel = trainRBF(inputs,targets, K) 
    %Calculating Centroids for K-means 
    exit = 0; 
    while (exit~=1) 
        AllowExit = 1; 
        [IDX, C, sumd, D] = kmeans(inputs, K, 'emptyaction', 
'singleton','replicates', 50);  
        for i=1:size(C,1) 
           for j=1:size(C,2) 
               if(C(i,j)== 0) 
                   AllowExit = 0; 
               end 
           end 
        end 
        if (AllowExit == 1) 
            exit = 1; 
        end 
    end 
     
    %Calculating the value of the sigma using distance between kernels 
    sigmas = zeros(1,size(C,1));  
    for i=1:size(C,1) 
       max_distance = 0; 
       for j=1:size(C,1) 
          if( i~=j) 
              distance = norm(C(i,:)-C(j,:)); 
              max_distance = max_distance + (distance^2); 
              if(distance>max_distance) 
                  max_distance = distance; 
              end 
          end 
       end 
       sigmas(i) = max_distance; 
    end 
        
    fai = zeros(size(inputs,1),K); 
    % Calculate output matrix (fae)   
    for i=1:size(inputs,1) 
       for j=1:K 
           fai(i,j) = nodeActivation(inputs(i,:), C(j,:), sigmas(j), 
1); 
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       end        
    end 
    fai = [fai ones(size(fai,1),1)]; %adding bias 
    %plot(1:size(fai,2),fai) 
     
    try 
        RBFModel.weights = pinv(fai) * targets; 
        RBFModel.C = C; 
        RBFModel.sigmas = sigmas; 
    catch PINV_ERROR 
        RBFModel = trainRBF(inputs,targets, K); 
    end 
end 
  
% function output = nodeActivation (input, centre, sigma, option) 
%  
% Give the kernel output   
%  
% Input: 
%   -inputs: A Input data 
% 
%   -centre:  A kernel 
% 
%   -sigma:  Value of sigma 
% 
%   -option:  Kernel function to be used 
% 
% Output: 
%   -output: Given Kernel output for the given one point/input 
  
function output = nodeActivation (input, centre, sigma, option) 
    r = norm(input - centre); 
    if (option == 1) %guassian 
        output = exp(- (r^2)/(2*(sigma^2)) ); 
    elseif (option == 2) %Multiquadric 
        output = sqrt( (r^2) + 0.3); 
    elseif (option == 3) %Inverse multiquadrics 
        output = 1 / (sqrt( (r^2) + 0.3)); 
    elseif (option == 4) % 
        output = exp(- (r^2)) + 0.1; 
    elseif (option == 5) % 
        output = r; 
    end 
         
end 
  
% function results = classifyRBF(inputs,C, weights, sigmas) 
%  
% Predict the output using trained RBF Model   
%  
% Input: 
%   -inputs: Inputs data for training 
% 
%   -C:  Selected kernels/centers for RBF model 
% 
%   -weights:  RBF trained weights 
% 
%   -sigmas:  Value of sigma for each kernel 
% 
% Output: 
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%   -Results: Prediction of the inputs 
  
function [results] = classifyRBF(inputs,C, weights, sigmas) 
    results = zeros(size(inputs,1),1); 
    K = size(C,1); 
    for i=1:size(inputs,1) 
        nodeOutput = weights(K+1); %bias 
        %nodeOutput = 0; 
        for j=1:K 
            nodeOutput = nodeOutput + ( weights(j) * 
nodeActivation(inputs(i,:), C(j,:), sigmas(j), 1) ); 
        end 
        if ( nodeOutput>0.5) 
            results(i) = 1; 
        else 
            results(i) = 0; 
        end 
         
    end  
  
end 
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A.9 ExperimentWithRVM 

% function [ErrorRate]= ExperimentWithRVM(Model, OPTIONS) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) 2009 University of Sussex 
%  
% Train and test the given MGO images using sparse Bayesian classifier 
and 
% return the error rate using k-fold cross validation. 
% 
% This method use the library developed by Tipping (2009) 
%  
% Input: 
%   -Model: Model which contains the data and other training info 
% 
%   -OPTIONS:  User options structure with sparse Bayesian classifier 
training parameters info 
% 
% Output: 
%   -ErrorRate: Error rate of K-Fold test 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
  
% SPARSEBAYESDEMO  Simple demonstration of the SPARSEBAYES algorithm 
% 
%   SPARSEBAYESDEMO(LIKELIHOOD, DIMENSION, NOISETOSIGNAL) 
% 
% OUTPUT ARGUMENTS: None 
%  
% INPUT ARGUMENTS: 
%  
%   LIKELIHOOD      Text string, one of 'Gaussian' or 'Bernoulli' 
%   DIMENSION       Integer, 1 or 2 
%   NOISETOSIGNAL   An optional positive number to specify the 
%                   noise-to-signal (standard deviation) fraction. 
%                   (Optional: default value is 0.2). 
%  
% EXAMPLES: 
%  
%   SPARSEBAYESDEMO("Bernoulli",2) 
%   SPARSEBAYESDEMO("Gaussian",1,0.5) 
% 
% NOTES:  
%  
% This program offers a simple demonstration of how to use the 
% SPARSEBAYES (V2) Matlab software. 
%  
% Synthetic data is generated from an underlying linear model based 
% on a set of "Gaussian" basis functions, with the generator being 
% "sparse" such that 10% of potential weights are non-zero. Data may 
be 
% generated in an input space of one or two dimensions. 
%  
% This generator is then used either as the basis for real-valued data 
with 
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% additive Gaussian noise (whose level may be varied), or for binary 
% class-labelled data based on probabilities given by a sigmoid link 
% function. 
%  
% The SPARSEBAYES algorithm is then run on the data, and results and 
% diagnostic information are graphed. 
% 
  
% 
% Copyright 2009, Vector Anomaly Ltd 
% 
% This file is part of the SPARSEBAYES library for Matlab (V2.0). 
% 
% SPARSEBAYES is free software; you can redistribute it and/or modify 
it 
% under the terms of the GNU General Public License as published by 
the Free 
% Software Foundation; either version 2 of the License, or (at your 
option) 
% any later version. 
% 
% SPARSEBAYES is distributed in the hope that it will be useful, but 
WITHOUT 
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
or 
% FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public 
License for 
% more details. 
% 
% You should have received a copy of the GNU General Public License 
along 
% with SPARSEBAYES in the accompanying file "licence.txt"; if not, 
write to 
% the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, 
Boston, 
% MA 02110-1301 USA 
% 
% Contact the author: m a i l [at] m i k e t i p p i n g . c o m 
% 
  
function [ErrorRate]= ExperimentWithRVM(Model, OPTIONS) 
  
    %Dividing data on K-Clusters for K-Fold training 
    indicesKFold = 
crossvalind('Kfold',Model.Data.Train.Group,OPTIONS.KFold); 
    cp = classperf(Model.Data.Train.Group); %Initialize classperf 
structure for error calculation 
  
    %START: Loop for KFold test 
    for i=1:OPTIONS.KFold 
        test = (indicesKFold == i); train = ~test; 
        if(OPTIONS.ExcludeTestingDataOnPCA) 
            [trainingInput testingInput] = 
PCA_TestSeparate(Model.Data.Train.Input(train,:),Model.Data.Train.Inpu
t(test,:),OPTIONS.UseNosOfMostVariantAxes);         
        else 
            trainingInput = Model.Data.Train.Input(train,:); 
            testingInput = Model.Data.Train.Input(test,:); 
        end 
        %Train Input using RVM 



Real-time hand gesture recognition for small devices  Page 83 
 

        RVMModel = trainRVM(trainingInput, 
Model.Data.Train.Group(train,:),OPTIONS.Likelihood,OPTIONS.NoiseToSign
al); 
        %Predict Output using RVM Model 
        classes = testRVM(RVMModel, testingInput); 
        classperf(cp,classes,test); %Update the error rate using new 
prediction 
    end 
    %END: Loop for KFold test 
    ErrorRate = cp.ErrorRate; 
  
end 
  
function[RVMModel] = trainRVM(inputs,groups, likelihood, 
noiseToSignal) 
  
    LIKELIHOOD  = SB2_Likelihoods(likelihood); 
    [N  dimension] = size(inputs);  % Number of points 
    basisWidth  = 0.05;     % NB: data is in [0,1] 
    % 
    % Define probability of a basis function NOT being used by the 
generative 
    % model. i.e. if pSparse=0.90, only 10% of basis functions (on 
average) will 
    % be used to synthesise the data. 
    %  
    pSparse     = 0.70; 
    iterations  = 500; 
    % 
    % Heuristically adjust basis width to account for  
    % distance scaling with dimension. 
    %  
    basisWidth  = basisWidth^(1/dimension); 
    % 
  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
    % 
    % --- SYNTHETIC DATA GENERATION --- 
    % 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
    %  
     
    % 
    % Now define the basis  
    %  
    % Locate basis functions at data points 
    %  
    C   = inputs; 
    % 
    % Compute ("Gaussian") basis (design) matrix 
    %  
    BASIS   = exp(-distSquared(inputs,C)/(basisWidth^2)); 
    % 
    % 
    % Randomise some weights, then make each weight sparse with 
probability 
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    % pSparse  
    %  
    M           = size(BASIS,2); 
    w           = randn(M,1)*100 / (M*(1-pSparse)); 
    sparse      = rand(M,1)<pSparse; 
    w(sparse)   = 0; 
    % 
    % Now we have the basis and weights, compute linear model 
    %  
    z           = BASIS*w; 
    % 
    % Finally generate the data according to the likelihood model 
    %  
    switch (LIKELIHOOD.InUse) 
     case LIKELIHOOD.Gaussian, 
      % Generate our data by adding some noise on to the generative 
function 
      noise     = std(z) * noiseToSignal; 
      Outputs   = z + noise*randn(N,1); 
      % 
     case LIKELIHOOD.Bernoulli, 
      % Generate random [0,1] labels given by the log-odds 'z' 
      Outputs   = groups; %double(rand(N,1)<SB2_Sigmoid(z)); 
    end 
    % 
  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
    %  
    % --- SPARSE BAYES INFERENCE SECTION --- 
    %  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
    % 
    % The section of code below is the main section required to run 
the 
    % SPARSEBAYES algorithm. 
    %  
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
    % 
    % Set up the options: 
    %  
    % - we set the diagnostics level to 2 (reasonable) 
    % - we will monitor the progress every 10 iterations 
    %  
    OPTIONS     = SB2_UserOptions(); 
    % 
    % Set initial parameter values: 
    %  
    % - this specification of the initial noise standard deviation is 
not 
    % necessary, but included here for illustration. If omitted, 
SPARSEBAYES 
    % will call SB2_PARAMETERSETTINGS itself to obtain an appropriate 
default 
    % for the noise (and other SETTINGS fields). 
    %  
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    SETTINGS    = SB2_ParameterSettings('NoiseStd',0.1); 
    % 
    % Now run the main SPARSEBAYES function 
    % 
    [PARAMETER, HYPERPARAMETER, DIAGNOSTIC] = ... 
        SparseBayes(likelihood, BASIS, Outputs, OPTIONS, SETTINGS); 
    % 
    % Manipulate the returned weights for convenience later 
    % 
    RVMModel.C = inputs(PARAMETER.Relevant,:); 
    RVMModel.Weights = PARAMETER.Value; 
    RVMModel.BasisWidth = basisWidth; 
    RVMModel.LIKELIHOOD = LIKELIHOOD; 
     
     
end 
  
%******************************************************* 
  
function [results] = testRVM(RVMModel, inputs) 
     
    BASIS   = exp(-
distSquared(inputs,RVMModel.C)/(RVMModel.BasisWidth^2)); 
    results = BASIS * RVMModel.Weights; 
  
    if(RVMModel.LIKELIHOOD.InUse == RVMModel.LIKELIHOOD.Bernoulli) 
        toOne   = (SB2_Sigmoid(results)>0.5); 
        results(toOne) = 1; 
        results(~toOne) = 0; 
    end 
  
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
%  
% Support function to compute basis 
% 
function D2 = distSquared(X,Y) 
    % 
    nx  = size(X,1); 
    ny  = size(Y,1); 
    % 
    D2 = (sum((X.^2), 2) * ones(1,ny)) + (ones(nx, 1) * 
sum((Y.^2),2)') - ... 
         2*X*Y'; 
  
end 
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A.10 ExperimentWithSVM.m 

% function [cp] = ExperimentWithSVM(Model, OPTIONS) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) 2009 University of Sussex 
%  
% Train and test the given MGO images using Support Vector Machine and 
% return the error rate using K-fold cross validation.   
%  
% Input: 
%   -Model: Model which contains the data and other training info 
% 
%   -OPTIONS:  User options structure with SVM training parameters 
info 
% 
% Output: 
%   -ErrorRate: Error rate of K-Fold test 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
function [ErrorRate] = ExperimentWithSVM(Model, OPTIONS) 
    %Dividing data on K-Clusters for K-Fold training 
    indicesKFold = 
crossvalind('Kfold',Model.Data.Train.Group,OPTIONS.KFold); 
    cp = classperf(Model.Data.Train.Group); %Initialize classperf 
structure for error calculation 
  
    %START: Loop for KFold test 
    for i=1:OPTIONS.KFold 
        test = (indicesKFold == i); train = ~test; 
        if(OPTIONS.ExcludeTestingDataOnPCA) 
            [trainingInput testingInput] = 
PCA_TestSeparate(Model.Data.Train.Input(train,:),Model.Data.Train.Inpu
t(test,:),OPTIONS.UseNosOfMostVariantAxes);         
        else 
            trainingInput = Model.Data.Train.Input(train,:); 
            testingInput = Model.Data.Train.Input(test,:); 
        end 
        %Train Input using SVM 
        %SVMStruct = svmtrain(trainingInput, 
Model.Data.Train.Group(train,:)); 
        SVMStruct = svmtrain(trainingInput, 
Model.Data.Train.Group(train,:),'Kernel_Function', 'rbf'); 
        %Predict Output using SVM Model 
        classes = svmclassify(SVMStruct,testingInput); 
        classperf(cp,classes,test); 
  
    end 
    %END: Loop for KFold test 
    ErrorRate = cp.ErrorRate; 
     
end  
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A.11 GetData.m 

% function[data, group] = GetData(gesture, OPTIONS) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) 2009 University of Sussex 
%  
% Return the training data and the class of the data for supervised 
% learning. Data will be either load from the given file or processed 
using 
% gesture videos. 
%  
% Input: 
%   -gesture: Data for experiment with one of the gesture from {'Bye', 
%   'Come', 'Down', 'Go', 'Good Luck', 'Left', 'Right', 'Up', 
'Victory'} 
% 
%   -OPTIONS: User options structure for locations/folders for data 
%      
% Output: 
%   -data: Return the training data set 
% 
%   -group: gesture id as group for data/row feature vector 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
function[data, group] = GetData(gesture, OPTIONS) 
     
    %START: If OPTIONS.LoadNewData = 1 
    if(OPTIONS.LoadNewData) 
         
        [data, group] = LoadData(OPTIONS); 
         
        if(OPTIONS.SaveData) 
            %Saving the data for later use, which would save the time 
to generate feature matrix  
            SaveData(data,group,OPTIONS.DataFileName,0) 
        end 
         
        %PCA training input and select only given higest variant 
principal 
        %components 
        [data] = PCA(data,OPTIONS.UseNosOfMostVariantAxes); 
  
        if(OPTIONS.SaveData) 
            %Saving data for later use, which would save the time 
required for 
            %feature calculation and PCA 
             SaveData(data,group,OPTIONS.DataFileName,1) 
        end 
         
    end 
    %END: If OPTIONS.LoadNewData 
     
    if(OPTIONS.ExcludeTestingDataOnPCA) 
        [data,group] = LoadDataFromFile(OPTIONS.DataFileName,0); 
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    else 
        [data,group] = LoadDataFromFile(OPTIONS.DataFileName,1); 
    end 
     
    [data, group] = GetTrainingData(gesture, OPTIONS, data, group); 
     
end 
  
%Save the data according to the option for later use 
function SaveData(data,group,fileName,pca) 
     
    switch (fileName) 
         
        case 'Data_AnitaRudra' 
            if(pca) 
                save Data_AnitaRudra_PCA data group 
            else 
                save Data_AnitaRudra data group 
            end 
        case 'Data_AnitaRudraPushmitaRajendra' 
            if(pca) 
                save Data_AnitaRudraPushmitaRajendra_PCA data group 
            else 
                save Data_AnitaRudraPushmitaRajendra data group 
            end 
        otherwise, 
            error('Unrecognised file name: ''%s''', fileName) 
    end 
end 
  
% Load the training data from the given file name for training 
function [data,group] = LoadDataFromFile(fileName,pca) 
     
    switch (fileName) 
         
        case 'Data_AnitaRudra' 
            if(pca) 
                load Data_AnitaRudra_PCA data group 
            else 
                load Data_AnitaRudra data group 
            end 
        case 'Data_AnitaRudraPushmitaRajendra' 
            if(pca) 
                load Data_AnitaRudraPushmitaRajendra_PCA data group 
            else 
                load Data_AnitaRudraPushmitaRajendra data group 
            end 
        otherwise, 
            error('Unrecognised file name: ''%s''', fileName) 
    end 
end 
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A.12 LoadData.m 

% function[data, group] = LoadData(option) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) 2009 University of Sussex 
%  
% The function process the videos data from the OPTIONS setting 
% and produce the inpute data for training 
%  
% Input: 
%   -OPTIONS: User options structure for locations/folders for data 
%      
% Output: 
%   -data: training dada processed from the gestures videos 
% 
%   -group: gesture id as group for data/row feature vector 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
function[data, group] = LoadData(OPTIONS) 
         
    data = []; 
    group = []; 
  
    %START: Loop over samples/users data 
    for iLocations=1: length(OPTIONS.Locations) 
       %START: Loop over gestures 
       for iGesture=1:length(OPTIONS.Gestures) 
           path = 
sprintf('%s\\%s\\%s',OPTIONS.RootFolder,OPTIONS.Locations{iLocations}, 
OPTIONS.Gestures{iGesture}); 
  
           %Get the various images for a give location  
           [MHIs, MGO] = GetMGOImages(path,OPTIONS); 
  
           %Add one gesture video column wise i.e. number of column 
equal to 
           %number of gesture videos 
           newData = GetMGOImagesMatrix(MGO,OPTIONS); 
           data = [data; newData]; 
           group = [group; repmat(iGesture,[size(newData,1) 1])]; 
  
           clear MHIs MGO newData 
           clear memory 
  
       end %END: Loop over gestures 
    end %END: Loop over samples/users data 
  
    %Randomize the row/sample order 
    newIndices = randperm(length(group)); 
    data = data(newIndices,:); 
    group = group(newIndices,:); 
     
end  
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A.13 GetFeatures.m 

% function [data, group] = GetFeatures(locations,groupValue, OPTIONS) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) 2009 University of Sussex 
%  
% This function load the features of specified locations/folders 
gesture videos 
% using MHI and MGO methods  
% 
% Input: 
%   -locations: locations/folders of the video 
% 
%   -groupValue: value for the group/class 
% 
%   -OPTIONS: User options structure for MHI, MGO and others 
%      
% Output: 
%   -data: feature matrix a gesture per column (NOT PER ROW) 
% 
%   -group: value of group/class which is same as groupValue 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
function [data, group] = GetFeatures(locations,groupValue, OPTIONS) 
    numberOfFolder = size(locations,2); 
    data = []; 
    %START: Loop for all locations 
    for i=1:numberOfFolder 
        %Get the various images for a give location  
        [MHIs, MotionGradientOrientations] = 
GetMGOImages(locations{1},OPTIONS); 
         
        %Add one gesture video column wise i.e. number of column equal 
to 
        %number of gesture videos 
        data = [data; 
GetMGOImagesMatrix(MotionGradientOrientations,OPTIONS)]; 
         
        clear MHIs ts masks MotionGradientOrientations mhiMasks 
        clear memory 
         
    end %END: Loop for all locations 
    data = data'; 
    group = repmat(groupValue,[1 size(data,2)]); %Assign group value 
for each gesture 
end %END: function [data, group] = GetFeatures(locations,groupValue, 
OPTIONS) 
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A.14 PCA.m 

% function [pcaTrainData] = PCA(trainData,useNosOfMostVariantAxes) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) 2009 University of Sussex 
%  
% The function do the PCA for the given input data  
% 
% Input: 
%   -trainData: training dada 
% 
%   -useNosOfMostVariantAxes: Number of most variant principle 
component to 
%   use to generate the project from the higher dimention to 
% 
%   -OPTIONS: User options structure for MHI, MGO and others 
%      
% Output: 
%   -pcaTrainData: Output after the PCA 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
function [pcaTrainData] = PCA(trainData,useNosOfMostVariantAxes) 
     
    [noRows noCols] = size(trainData); 
     
    meanValues = mean(trainData,1); 
    trainData = trainData - repmat(meanValues,noRows,1); 
         
    covResult = cov(trainData); 
    %covResult(1:10,1:10) 
    [V,D] = eig(covResult); 
    %V(1:10,1:10) 
    %D(1:10,1:10) 
    %[V,D] 
     
%     beforeSort = diag(D); 
%     afterSort = sort(beforeSort); 
%     diff = abs(beforeSort - afterSort); 
%     sum(diff) 
    pcaTrainData = trainData * V(:,noCols-
useNosOfMostVariantAxes+1:noCols); 
     
    clear covResult V D noCols 
end %END: [pcaTrainData] = PCA(trainData,useNosOfMostVariantAxes) 
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A.15 PCA_TestSeparate.m 

% function [pcaTrainData,pcaTestData] = 
% PCA_TestSeparate(trainData,testData,useNosOfMostVariantAxes) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) 2009 University of Sussex 
%  
% The function do the PCA for the given input data and testing data 
will be 
% projected based on the only training data- to make sure that 
training set 
% would not have any knowledge of testing data 
% 
% Input: 
%   -trainData: Input training data 
% 
%   -testData: Input testing data 
% 
%   -useNosOfMostVariantAxes: Number of most variant principle 
component to 
%   use to generate the project from the higher dimention to 
%      
% Output: 
%   -pcaTrainData: Output after the PCA 
% 
%   -pcaTestData: Output after the PCA of test data based on the 
training 
%   data 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
function [pcaTrainData,pcaTestData] = 
PCA_TestSeparate(trainData,testData,useNosOfMostVariantAxes) 
     
    noCols = size(trainData,2); 
    covResult = cov(trainData); 
    [V,D] = eig(covResult); 
    pcaTrainData = trainData * V(:,noCols-
useNosOfMostVariantAxes+1:noCols); 
    pcaTestData = testData * V(:,noCols-
useNosOfMostVariantAxes+1:noCols); 
     
    clear covResult V D noCols 
end 
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A.16 GetMGOImages.m 

% function [MHIs, MotionGradientOrientations]= 
% GetMGOImages(location,OPTIONS) 
% 
% This function return the MHIs, Masks, MGO Images 
% using MHI and MGO methods of the given location's videos 
% 
% Input: 
%   -locations: locations/folders of the gesture video 
% 
%   -OPTIONS: User options structure for MHI, MGO and others 
%      
% Output: 
%   -MHIs: Motion History Images  
% 
%   -MotionGradientOrientations: Motion Gradient Orientation images 
for of 
%   each MHI 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
function [MHIs,MotionGradientOrientations]= 
GetMGOImages(location,OPTIONS) 
     
    list=dir(location); 
  
    %if it read the system file names as well then remove those system 
files, if they exist 
    %they always use to be 2 
    if list(1).name == '.', 
      list = list(3:end); 
    end 
    N = size(list,1); 
     
    %Allocate the memory 
    MHIs = cell(N,1); 
    MotionGradientOrientations = cell(N,1); 
     
    %START: Loop through all gesture videos 
    for i=1:N 
        filename = strcat(location, '/',list(i).name); 
        %Get the Motion History Image 
        [MHIs{i}] = 
GetMotionHistory(filename,OPTIONS.Delta,OPTIONS.Frame_Buffer_Size,OPTI
ONS.Use_AVIread); 
         
        %Get the Motion Gradient Orientations image from the MHI 
according 
        %the use options 
        [MotionGradientOrientations{i}] = 
GetMotionGradientOrientations(MHIs{i}, OPTIONS.Delta_Min, 
OPTIONS.Delta_Max,OPTIONS.Gradient_Epsilon,OPTIONS.One_Eighty_By_PI); 
    end 
    %END: Loop through all gesture videos 
end 
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A.17 GetPrePCA_V_Matrix.m 

% function [V] = GetPrePCA_V_Matrix(trainData) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) 2009 University of Sussex 
%  
% The function do the PCA for the given input data  
% 
% Input: 
%   -trainData: training dada 
% 
%      
% Output: 
%   -V: Matrix V whose columns are the corresponding eigenvectors 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
function [V] = GetPrePCA_V_Matrix(trainData) 
     
    [noRows noCols] = size(trainData); 
     
    meanValues = mean(trainData,1); 
    trainData = trainData - repmat(meanValues,noRows,1); 
         
    covResult = cov(trainData); 
    %covResult(1:10,1:10) 
    [V,D] = eig(covResult); 
  
end %END: [V] = GetPrePCA_V_Matrix(trainData) 
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A.18 GetMGOImagesMatrix.m 

% function [MGOMatrix] = GetMGOImagesMatrix(MGOImages,OPTIONS) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) 2009 University of Sussex 
%  
% This function generate the MGO Matrix from the given MGO images 
% 
% Input: 
%   -MGOImages: MGO Images 
% 
%   -OPTIONS: User options structure for resize/rescale 
%      
% Output: 
%   -MGOMatrix: MGO matrix i.e. feature matrix of given MGO Images  
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
function [MGOMatrix] = GetMGOImagesMatrix(MGOImages,OPTIONS) 
     
    if(length(MGOImages)>0) 
        aMGOImage = MGOImages{1}; 
        aMGOImage = imresize(aMGOImage,OPTIONS.MGOImages_Scale); 
%resize the image 
        [row col] = size(aMGOImage); 
        MGOMatrix = zeros(length(MGOImages),row * col); 
        for i=1:length(MGOImages); 
            aMGOImage = MGOImages{i}; 
            %aMGO = imresize(aMGO,[NaN OPTIONS.MGO_Width]); %resize 
the image 
            aMGOImage = imresize(aMGOImage,OPTIONS.MGOImages_Scale); 
%resize the image 
            MGOMatrix(i,:) = aMGOImage(:); %convert image matrix to a 
row vector 
        end 
        %MGOMatrix = MGOMatrix'; %convert rows vector to cols vector 
    else 
        MGOMatrix = []; %If size of MGOImages is 0 then return empty 
matrix 
    end 
end %END: function [MGOMatrix] = GetMGOImagesMatrix(MGOImages,OPTIONS) 
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A.19 GraphPlot.m 

% function GraphPlot() 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) Copyright University of Sussex 
%  
% Plot the graph for different hand gestures recognition model's 
result.   
%  
% Input: 
%   -None   
% 
% Output: 
%   -Based on the called function. Either will write to file or 
console 
%   output 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
function GraphPlot() 
     
%     %Print the tables for NB 
%     files = {'N:\Thesis\Working\Results\First with K-5 to 
30\All_All.txt' ... 
%         ,'N:\Thesis\Working\Results\First with K-5 to 30\All_LR.txt' 
... 
%         ,'N:\Thesis\Working\Results\First with K-5 to 30\All_UD.txt' 
... 
%         ,'N:\Thesis\Working\Results\First with K-5 to 
30\Rudra_RF.txt' ... 
%         ,'N:\Thesis\Working\Results\First with K-5 to 
30\Rudra_UD.txt' ... 
%         }; 
%      
%     
PrintSuccessRateTable(files,'RVM','N:\Thesis\Working\Results\First 
with K-5 to 30\K_5to30_RVM.txt'); 
     
%     %Print the tables for All methods for single signer 
%     files = {'N:\Thesis\Working\Results\Single 
Signer\RBF_Single_Singer.txt' ... 
%         ,'N:\Thesis\Working\Results\Single 
Signer\MLP_Single_Singer.txt' ... 
%         ,'N:\Thesis\Working\Results\Single 
Signer\NB_Single_Singer.txt' ... 
%         ,'N:\Thesis\Working\Results\Single 
Signer\SVM_Single_Singer.txt' ... 
%         ,'N:\Thesis\Working\Results\Single 
Signer\RVM_Single_Singer.txt' ... 
%         }; 
%      
%     
PrintSuccessRateTableAllGestures(files,'N:\Thesis\Working\Results\Sing
le Signer\Single_Singer.txt'); 
     
%     %Print the tables for All methods for single signer 
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%     files = {'N:\Thesis\Working\Results\All 
Signers\RBF_All_Signers.txt' ... 
%         ,'N:\Thesis\Working\Results\All Signers\MLP_All_Signers.txt' 
... 
%         ,'N:\Thesis\Working\Results\All Signers\NB_All_Signers.txt' 
... 
%         ,'N:\Thesis\Working\Results\All Signers\SVM_All_Signers.txt' 
... 
%         ,'N:\Thesis\Working\Results\All Signers\RVM_All_Signers.txt' 
... 
%         }; 
%      
%     
PrintSuccessRateTableAllGestures(files,'N:\Thesis\Working\Results\All 
Signers\All_Singer.txt'); 
  
    %Print the tables for All methods for single signer 
    files = {'N:\Thesis\Working\Results\Different Training 
Size\30\RBF_All_Signers30.txt' ... 
        ,'N:\Thesis\Working\Results\Different Training 
Size\30\MLP_All_Signers30.txt' ... 
        ,'N:\Thesis\Working\Results\Different Training 
Size\30\NB_All_Signers30.txt' ... 
        ,'N:\Thesis\Working\Results\Different Training 
Size\30\SVM_All_Signers30.txt' ... 
        ,'N:\Thesis\Working\Results\Different Training 
Size\30\RVM_All_Signers30.txt' ... 
        }; 
     
    
PrintSuccessRateTableAllGestures(files,'N:\Thesis\Working\Results\Diff
erent Training Size\30\All_Singer30.txt'); 
        
end 
  
%Print the success rate on the given fileName by reading the results 
from 
%the files for the given model (successFor) 
function PrintSuccessRateTable(files,successFor,fileName) 
  
    result = []; 
    K = []; 
    for i=1:length(files) 
        [K,RBF,SVM,MLP,NB,RVM] = textread(files{i},'%f %f %f %f %f 
%f'); 
        if(strcmpi(successFor,'SVM')) 
            result = [result SVM]; 
        elseif (strcmpi(successFor,'NB')) 
            result = [result NB]; 
        elseif (strcmpi(successFor,'RVM')) 
            result = [result RVM]; 
        end 
             
    end 
    result =  100 - (100 .* result); 
    result = [K result]; 
     
    fid = fopen(fileName,'wt'); 
    [Rows,Cols] = size(result); 
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    for iRow=1:Rows 
        for iCol=1:Cols 
            if (iCol~=1) 
                fprintf(fid,'\t'); 
            end 
            fprintf(fid,'%2.0f',result(iRow,iCol)); 
        end 
        if (iRow~=Rows) 
            fprintf(fid,'\n'); 
        end 
    end 
    fclose(fid); 
    
end 
  
%Print the success rate on the given fileName by reading the results 
from 
%the files 
function PrintSuccessRateTableAllGestures(files,fileName) 
  
    result = []; 
    for i=1:length(files) 
        [errorRate] = textread(files{i},'%f'); 
        result = [result errorRate];            
    end 
    result =  100 - (100 .* result); 
         
    avgSuccess = sum(result) ./ (size(result,1)); 
     
    fid = fopen(fileName,'wt'); 
     
    [Rows,Cols] = size(result); 
    for iRow=1:Rows 
        for iCol=1:Cols 
            if (iCol~=1) 
                fprintf(fid,'\t'); 
            end 
            fprintf(fid,'%2.0f',result(iRow,iCol)); 
        end 
        %if (iRow~=Rows) 
            fprintf(fid,'\n'); 
        %end 
    end 
     
    [Rows,Cols] = size(avgSuccess); 
    for iRow=1:Rows 
        for iCol=1:Cols 
            if (iCol~=1) 
                fprintf(fid,'\t'); 
            end 
            fprintf(fid,'%2.2f',avgSuccess(iRow,iCol)); 
        end 
    end 
     
    fclose(fid); 
    
end 
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A.20 TestMGO.m 

% function TestMGO(location, OPTIONS) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) 2009 University of Sussex 
%  
% Testing the MGO output to cross validate the features extraction 
% functions. i.e. The main purpose of this file is to cross validate 
the MHI and MGO. 
% 
% Input: 
%   -location: location/folder of the videos 
%   -OPTIONS: users options/model for experiment 
%      
% Output: 
%   -Empty 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
function TestMGO(location, OPTIONS) 
     
    filename = 'N:\Thesis\Data\Rudra-Day\Victory\Victory_Rudra01.avi'; 
    %Get the Motion History Image 
    [MHI] = 
GetMotionHistory(filename,OPTIONS.Delta,OPTIONS.Frame_Buffer_Size,OPTI
ONS.Use_AVIread); 
  
    %Get the Motion Gradient Orientations image from the MHI according 
    %the use options 
    [MGO] = GetMotionGradientOrientations(MHI, OPTIONS.Delta_Min, 
OPTIONS.Delta_Max,OPTIONS.Gradient_Epsilon,OPTIONS.One_Eighty_By_PI); 
     
    %Map delta duration to 0 to 255 to generate gray scale image 
    %(gMHI) 
    gMHI = MHI; 
    tempUpdate = MHI>0; 
    gMHI(tempUpdate)= MHI(tempUpdate) .* (255./OPTIONS.Delta); 
    gMHI = uint8(  gMHI); 
     
    gMHI = imresize(gMHI,OPTIONS.MGOImages_Scale); %resize the image 
    MGO = imresize(MGO,OPTIONS.MGOImages_Scale); %resize the image 
             
    imtool(gMHI) 
    imtool(MGO) 
    return; 
     
    %Get MGO Images 
    [MHIs, MotionGradientOrientations] = 
GetMGOImages(location,OPTIONS); 
     
    %Display the Images using imtool 
    for i=1:5%length(MHIs) 
         
        %Map delta duration to 0 to 255 to generate gray scale image 
        %(mhiMasks) 
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        gMHI = MHIs{i}; 
        tempUpdate = MHIs{i}>0; 
        gMHI(tempUpdate)= MHIs{i}(tempUpdate) .* (255./OPTIONS.Delta); 
        gMHI = uint8(  gMHI); 
         
        imtool(gMHI) 
  
        %imtool(MotionGradientOrientations{i}) 
    end 
     
%     data = GetMGOImagesMatrix(MotionGradientOrientations,OPTIONS); 
%     [data] = PCA(data,OPTIONS.UseNosOfMostVariantAxes); 
%     %[data] = PCA2(data',OPTIONS.UseNosOfMostVariantAxes); 
%     size(data) 
         
    clear MHIs ts masks MotionGradientOrientations mhiMasks 
    clear memory 
end %END: function TestMGO(location, OPTIONS) 
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A.21 GetTrainingData.m 

% function[data, group] = GetTrainingData(gesture, OPTIONS, data, 
group) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) Copyright University of Sussex 
%  
% Prepare the training and testing set from the input data based on 
input 
% gesture 
%  
% Input: 
%   -gesture: Data for experiment with one of the gesture from {'Bye', 
%   'Come', 'Down', 'Go', 'Good Luck', 'Left', 'Right', 'Up', 
'Victory'} 
% 
%   -OPTIONS: User options structure for locations/folders for data 
% 
%   -data: input training data to generate the features vector 
% 
%   -group: gesture id as group for data/row feature vector 
%      
% Output: 
%   -data: return the data 
% 
%   -group: gesture id as group for data/row feature vector 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
function[data, group] =  GetTrainingData(gesture, OPTIONS, data, 
group) 
     
    if(~strcmpi(gesture,'All')) 
        index = strmatch(gesture, OPTIONS.Gestures,'exact'); 
        positiveClass = group == index(1); 
        positiveData = data(positiveClass,:); 
        negativeData = data(~positiveClass,:); 
         
        positiveCases = size(positiveData,1) 
        negativeCases = size(negativeData,1); 
         
        if(positiveCases>100) 
            positiveData = positiveData(1:100,:); 
        end 
        positiveCases=100; 
         
        if(negativeCases>positiveCases) 
            negativeCases = positiveCases; 
        end 
        negativeData = negativeData(1:negativeCases,:); 
         
        data = positiveData; 
        group = repmat(1,[positiveCases 1]); 
         
        data = [data; negativeData]; 
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        group = [group; repmat(0,[negativeCases 1])]; 
         
        newIndices = randperm(length(group)); 
        data = data(newIndices,:); 
        group = group(newIndices,:); 
    end 
     
end 
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A.22 GetMotionHistory.m 

% function [MHI] = 
% GetMotionHistory(filename,DELTA,FRAME_BUFFER_SIZE,USE_AVIREAD) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) Copyright University of Sussex 
%  
% Generate the Motion History image from the give video file.   
%  
% Input: 
%   -filename: video's full path 
% 
%   -DELTA: Time in Second, the duration for Motion History Images 
% 
%   -FRAME_BUFFER_SIZE: Buffer size to calculate the frames difference 
% 
%   -USE_AVIREAD: ption whether to read video using AVI (1) or 
multimedia 
%   reader (0) library 
% 
% Output: 
%   -MHI: MHI of the input video 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
function [MHI] = 
GetMotionHistory(filename,DELTA,FRAME_BUFFER_SIZE,USE_AVIREAD) 
  
    %Variables initialization 
    MHI = [,]; 
    previousFrames = cell(FRAME_BUFFER_SIZE,1); 
    currentFrameIndex = 1; 
    timestamp=0; 
    timestampFactor = 0; 
     
    %[pathstr, name, ext, ver] = fileparts(filename); 
    if( USE_AVIREAD ) %if USE_AVIREAD = 1 (TRUE)  
             
        %read the movie using matlab avi library 
        mov = aviread(filename); 
        numberOfFrames = size(mov,2); 
        %START: Loop for each frame of the gesture video 
        for i=1:numberOfFrames 
           aFrame = frame2im(mov(i)); %converting a movie frame to 
image 
           if(i==1) 
              try 
                MHI = rgb2gray(aFrame); %converting frame image to 
gray scale 
              catch 
                %Error will come if image is already in gray scale 
                MHI = aFrame; 
              end 
              %allocating the first frame to index 
              %2 to remove the all backgroud from the first frame only 
              previousFrames{2} = MHI;  
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              MHI = MHI .* 0; %allocating the MHI size equal to frame 
size 
              for j=1:FRAME_BUFFER_SIZE  
                  if(j~=2) 
                    previousFrames{j} = MHI; %allocating all buffer 
image size equal to frame size 
                  end 
              end 
              MHI = double(MHI); %Changing data time of MHI to double 
               
              %Calculating the time stamp factor i.e. real time 
elapsed 
              %between each frame 
              movInfo = aviinfo(filename); 
              timestampFactor = 1/movInfo.FramesPerSecond; 
           end 
           timestamp = timestampFactor*i; %total time elapsed 
            
           %Updating MHI using new frame 
           [MHI,previousFrames,currentFrameIndex] = 
addNewFrameOnMHI(MHI, aFrame, previousFrames, 
currentFrameIndex,timestamp,FRAME_BUFFER_SIZE,DELTA);  
        end 
        %END: Loop for each frame of the gesture video 
          
        clear numberOfFrames  
         
    else %if file format is non-avi      
        mov = mmreader(filename); 
        %START: Loop for each frame of the gesture video 
        for i=1:mov.NumberOfFrames 
           aFrame = read(mov,i); %reading ith movie frame 
           if(i==1) 
              try 
                MHI = rgb2gray(aFrame); %converting frame image to 
gray scale 
              catch 
                %Error will come if image is already in gray scale 
                MHI = aFrame; 
              end 
               %allocating the first frame to index 
              %2 to remove the all backgroud from the first frame only 
              previousFrames{2} = MHI; 
              MHI = MHI .* 0; %allocating the MHI size equal to frame 
size 
              for j=1:FRAME_BUFFER_SIZE 
                  if(j~=2) 
                    previousFrames{j} = MHI; %allocating all buffer 
image size equal to frame size 
                  end 
              end 
              MHI = double(MHI); %Changing data time of MHI to double 
               
              %Calculating the time stamp factor i.e. real time 
elapsed 
              %between each frame 
              movInfo = mmfileinfo(filename); 
              timestampFactor = movInfo.Duration/mov.NumberOfFrames; 
           end 
           timestamp = timestampFactor*i; %total time elapsed 
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           %Updating MHI using new frame 
           [MHI,previousFrames,currentFrameIndex] = 
addNewFrameOnMHI(MHI,aFrame,previousFrames,currentFrameIndex,timestamp
,FRAME_BUFFER_SIZE,DELTA);   
        end 
        %END: Loop for each frame of the gesture video 
  
    end 
  
    %Adjust timestamp to 0 to DELTA 
    keepMHIUpto = DELTA-timestamp; 
    tempUpdate = MHI>0; %Adjust only non-zero fields 
    MHI(tempUpdate) = MHI(tempUpdate) + keepMHIUpto;  
  
    clear filename previousFrames currentFrameIndex timestampFactor 
aFrame mov movInfo 
  
end 
  
% function [MHI,previousFrames,currentFrameIndex] = 
% 
addNewFrameOnMHI(MHI,aNewFrame,previousFrames,currentFrameIndex,timest
amp 
% ,FRAME_BUFFER_SIZE,DELTA) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) Copyright University of Sussex 
%  
% Generate the Motion History image from the give video file.   
%  
% Input: 
%   -MHI: MHI which will be update using current frame (aNewFrames) 
% 
%   -aNewFrame: New Frame to update MHI 
% 
%   -previousFrames: Previous frames 
% 
%   -currentFrameIndex: Index to update the buffer using current frame  
% 
%   -timestamp: Time stamp i.e. time elapsed from the starting of the 
video 
% 
%   -FRAME_BUFFER_SIZE: the size of the buffer 
% 
%   -DELTA: Time duration used for MHI    
% 
% Output: 
%   -MHI: Updated MHI 
% 
%   -previousFrames: Updated frame bufffer using current aNewFrames 
% 
%   -currentFrameIndex: Next buffer index to update  
%    i.e. currentFrameIndex + 1, in cyclic order 
  
function [MHI,previousFrames,currentFrameIndex] = 
addNewFrameOnMHI(MHI,aNewFrame,previousFrames,currentFrameIndex,timest
amp,FRAME_BUFFER_SIZE,DELTA) 
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    %Converting the frame to gray scale and saving to buffer 
    try 
        previousFrames{currentFrameIndex} = rgb2gray(aNewFrame); 
    catch 
       %Error will come if image is already in gray scale 
       previousFrames{currentFrameIndex} = aNewFrame; 
    end 
  
    %Calculating next frame index in cyclic order 
    nextFrameIndex = currentFrameIndex+1; 
    if(nextFrameIndex>FRAME_BUFFER_SIZE) 
        nextFrameIndex = 1; 
    end 
     
    %Generate the silhouette using the frame difference then binary 
thresh 
    %holding 
    silhouette = imabsdiff(previousFrames{currentFrameIndex}, 
previousFrames{nextFrameIndex}); 
    thresh = graythresh(silhouette); 
    silhouette = (silhouette >= thresh * 255); 
     
    %Updating the MHI using silhouette 
    [MHI] = UpdateMotionHistory(MHI, silhouette, timestamp, DELTA); 
    currentFrameIndex = nextFrameIndex; 
     
    clear silhouette thresh nextFrameIndex 
     
end 
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A.23 UpdateMotionHistory.m 

% function [MHI] = UpdateMotionHistory(MHI, silhouette, timestamp, 
DELTA) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) Copyright University of Sussex 
%  
% Update Motion History Image with the given silhoutte.   
%  
% Input: 
%   -MHI: MHI which will be update using current silhouette 
% 
%   -silhouette: Silhouette to update MHI 
% 
%   -timestamp: Time stamp i.e. time elapsed from the starting of the 
video 
%    which will be use for MHI 
% 
%   -DELTA: Time in Second, the duration for Motion History Image 
% 
% Output: 
%   -MHI: Updated MHI 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
function [MHI] = UpdateMotionHistory(MHI, silhouette, timestamp, 
DELTA) 
     
    %Update all silhoutte location with current timestamp 
    MHI(silhouette) = timestamp; 
     
    %Set all MHI location to 0, if timestamps in given locations are 
older than DELTA  
    keepMHIUpto = timestamp-DELTA; %Either we could do (timestamp-
DELTA-1)  
    %OR we could always assign DELTA value to 1 less 
    toZero = MHI < keepMHIUpto; 
    MHI(toZero) = 0; 
     
    clear keepMHIUpto toZero 
     
end %END: function [MHI] = UpdateMotionHistory(MHI, silhouette, 
timestamp, DELTA) 
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A.24 GetMotionGradientOrientations.m 

% function [orientation] = GetMotionGradientOrientations(MHI, 
% DELTA_MIN, DELTA_MAX,GRADIENT_EPSILON,ONE_EIGHTY_BY_PI) 
%  
%     Author: Rudra PK Poudel 
%     Contact: rudrapoudel@gmail.com 
%     (c) Copyright University of Sussex 
%  
% Generate the Motion Gradient Orientations from the give MHI.   
%  
% Input: 
%   -MHI: MHI to generate the Motion Gradient Orientation 
% 
%   -DELTA_MIN: Set the MGO to 0 if value of neighbour is less than 
%   Delta_Min 
% 
%   -DELTA_MAX: Set the MGO to 0 if value of neighbour is greater than 
%   Delta_Max 
% 
%   -GRADIENT_EPSILON: Set the MGO to 0 if value of X or Y gradient is 
less 
%   than Gradient_Epsilon 
% 
%   -ONE_EIGHTY_BY_PI: Value of 180.PI to optimize the code   
% 
% Output: 
%   -orientation: Motion Gradient Orientation 
% 
% Dates: 
%   -First Published: 1-Sept-2009 
  
function [orientation] = GetMotionGradientOrientations(MHI, DELTA_MIN, 
DELTA_MAX,GRADIENT_EPSILON,ONE_EIGHTY_BY_PI) 
    
    %Calculating the X and Y derivatives using Sobel operator 
    h = fspecial('sobel'); 
    Fy = conv2(MHI,h,'same'); %Y-Derivative 
     
    h = -h'; 
    Fx = conv2(MHI,h,'same'); %X-Derivative 
     
    % Calculating orientation using X and Y derivatives 
    %orientation = rad2deg(atan(Fy ./ Fx)); %Gradient orientation 
    orientation = ( atan(Fy ./ Fx) * ONE_EIGHTY_BY_PI ); %Gradient 
orientation 
     
%     %Allocating the mask, by default all are on 
%     mask = MHI .* 1; 
     
    %off the mask where X and Y both gradients are too low 
    toZero = (abs(Fx) < GRADIENT_EPSILON) & (abs(Fy) < 
GRADIENT_EPSILON); 
%     mask(toZero) = 0; 
    orientation(toZero) = 0; 
     
    %Also off the mask on the border and noise area, using dilate and 
erode 
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    %trick 
    se = strel('square',3); 
    Fy = imdilate(MHI,se,'notpacked','same'); 
    Fx = imerode(MHI,se,'notpacked','same'); 
     
    tempFyMinusFx = Fy - Fx; 
    toZero = tempFyMinusFx < DELTA_MIN | tempFyMinusFx > DELTA_MAX; 
%     mask(toZero) = 0; 
    orientation(toZero) = 0; 
     
    clear h Fy Fx toZero se tempFyMinusFx 
     
end %END: function [orientation] = GetMotionGradientOrientations(MHI, 
DELTA_MIN, DELTA_MAX,GRADIENT_EPSILON,ONE_EIGHTY_BY_PI) 
 

 


