
A. PAREN, R. POUDEL: TRAINING FULLY BINARY NEURAL NETWORKS THE EASY WAY1

Training Fully Binary Neural Networks
the Easy Way - Supplementary Materials

Alasdair Paren1

https://alasdair-p.github.io/Alasdair-P/

Rudra P. K. Poudel2

https://www.rudrapoudel.com

1 Department of Engineering Science
University of Oxford
Oxford, UK

2 Cambridge Research Laboratory,
Toshiba Europe Ltd,
Cambridge, UK.

1 Theoretical Justification

BNEW enjoys the same theoretical convergence rate as ProxQuant. Here we restate the
result presented in ProxQuant [1]. We note that the following rate assumes that f is smooth
which is not the case when including ReLU or sign functions within the network. However,
as suggestied in [1] it is easy to use smoothed alternatives to these functions. For example,
tanh(kxxx) with an appropriate choice of k can be used in place of sign(xxx) to get a desired level
of smoothness.

Theorem 1 (BNEW) We assume that f is β -smooth. Let F∗ ≜ minΩ Fλ (www). We further
assume that ηt =

1
2β
, ∀t and we have access to the batch gradient ∇ f and λt = λ then if we

use BNEW with updates (5) and (12) from the main paper for T steps we have:

∥∇Fλ (wwwTbest )∥
2 ≤ Cβ (Fλ (www0)−F∗)

T
, (1)

where C > 0 is a constant and Tbest is defined as Tbest ≜ argmin1≤t≤T ∥wwwt −wwwt−1∥.

Proof: At each time step t we solve the following proximal problem:

wwwt+1 = argmin
www∈Ω

{ 1
2ηt

∥www−wwwt∥2 + f (wwwt)+∇ f (wwwt)
⊤(www−wwwt)+λR(www)

}
. (2)

As wwwt+1 minimises the above objective we get:

Fλ (wwwt)≜ f (wwwt)+λR(wwwt), (3)

≥ 1
2ηt

∥wwwt+1 −wwwt∥2 + f (wwwt+1)+∇ f (wwwt)
⊤(wwwt+1 −wwwt)+λR(wwwt+1). (4)

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Bai, Wang, and Liberty} 2019

Citation
Citation
{Bai, Wang, and Liberty} 2019



2A. PAREN, R. POUDEL: TRAINING FULLY BINARY NEURAL NETWORKS THE EASY WAY

Now using smoothness of f :

Fλ (wwwt)≥
(

1
2ηt

− β

2

)
∥www−wwwt∥2 + f (wwwt+1)+∇ f (wwwt)

⊤(wwwt+1 −wwwt)+λR(wwwt+1). (5)

Thus, we have the following recursive relationship:

Fλ (wwwt)≥ Fλ (wwwt+1)+
β

2
∥wwwt+1 −wwwt∥2. (6)

Telescoping (7) for t = 0, ...,T −1 we get:

Fλ (www0)≥ Fλ (wwwT )+
β

2

T−1

∑
t=0

∥wwwt+1 −wwwt∥2. (7)

Rearranging:

T−1

∑
t=0

∥wwwt+1 −wwwt∥2 ≤ 2(Fλ (www0)−Fλ (wwwT ))

β
≤ 2(Fλ (www0)−F∗)

β
. (8)

Therefore, we arrive at the proximity guarantee:

min
1≤t≤T

∥wwwt −wwwt−1∥ ≤
2(Fλ (www0)−F∗)

βT
. (9)

The first-order optimality condition for wwwt+1 gives:

∇ f (wwwt)+
1
ηt

(www−wwwt)
2 +∇λtR(wwwt+1) = 0 (10)

Combining with (10) and the smoothness of ℓz:

∥∇Fλ (wwwt+1)∥= ∥∇ f (wwwt+1)+λR(wwwt+1)∥ (11)

= ∥∇ f (wwwt+1)−∇ f (wwwt)−
1
ηt

(www−wwwt)
2∥ (12)

≤
(

1
η
+β

)
∥www−wwwt∥= 3β∥www−wwwt∥ (13)

Inserting t = Tbest −1 and applying (9), we obtain the desired result.

∥∇Fλ (wwwTbest )∥
2 ≤ 9β

2∥wwwTbest −wwwTbest−1∥2, (14)

∥∇Fλ (wwwTbest )∥
2 ≤ 9β

2 argmin
1≤t≤T

∥wwwt −wwwt−1∥2 ≤ 18β (Fλ (www0)−F∗)
T

. (15)

□



A. PAREN, R. POUDEL: TRAINING FULLY BINARY NEURAL NETWORKS THE EASY WAY3

Table 1: Accuracies on CIFAR-100 data set with shorter epoch budget.

EPOCHS 200 1000 200 1000

DISTILLATION NO YES

STE 53.6σ0.9 55.0σ0.5 56.1σ0.4 56.8σ0.3
BMD 53.3σ0.4 54.8σ0.5 55.7σ0.6 56.8σ0.5
BOP 54.3σ0.7 55.4σ0.4 56.5σ0.2 57.7σ0.4

BNEW 52.7σ0.3 55.0σ0.5 55.8σ0.5 57.5σ0.3

2 Shorter Training Budget
Setting and Method. In this section we investigate the performance of STE, BMD, BOP,
and BNEW when using a shorter training time. Here we repeat the CIFAR-100 experiments
from Section 5.1 with the modification that the epoch budget is reduced to 200.

Results. The results of this investigation are shown in Table 1, along side the results pro-
duced using the 1000 Epoch training budget for ease of comparison. For all methods the
shorter training duration decreases performance. BOP performs the best for the shorter bud-
get, dropping in generalisation accuracy by at most 1.2%. In contrast BNEW, experiences
a significant drop in accuracy with the shorter training duration. Dropping 2.3% and 1.7%
for the CIFAR-10 and CIFAR-100 data sets, respectively. From these results we would rec-
ommend i) use of the BOP optimiser if training duration is a limiting factor and; ii) a long
training budget when using BNEW.

3 Ablation Study
Setting. In this section we investigate the performance when removing various aspects of
the ReActNet architectures [7]. ReActNet is a bespoke fully binary neural network archi-
tecture, which achieves state-of-the-art performance on ImageNet. ReActNet is based on
MobileNet [4] with a number of modifications making it better suited for use with binary
weights and activations. In Section 5.1 we provided results of training a ResNet20 [3] with
these modifications using STE, BMD and BNEW. Here, using the same model we investi-
gate the effect of removing these modifications one at a time on the performance of BNEW.
We also provide results produced using the STE method for a comparison. We do this to
help disentangle what architectural choices are useful irrespective of optimisation method.

Method. In order to save computation similar to Section 2 we use a 200 epoch budget and
η0 = 0.01 in combination with a linearly decaying step size schedule. We use η0 = 0.01
with a linear decay for the pre-training and quantisation phases. We use λrate = 0.01. We
again report test error and standard deviation values calculated over five independent runs
with different random seeds.

Baseline. The baseline models that we perform the Ablation study are trained using distil-
lation as detailed in Section 2 above.

Citation
Citation
{Liu, Shen, Savvides, and Cheng} 2020

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2019

Citation
Citation
{He, Zhang, Ren, and Sun} 2016



4A. PAREN, R. POUDEL: TRAINING FULLY BINARY NEURAL NETWORKS THE EASY WAY

Learnable Bias Layers. [7] increase the expressive power of ReActNet by using RSign
and RPReLU activation functions rather than the non-parametric versions; Sign and PReLU.
RSign and RPReLU are generalised activation functions, which effectively add additional
real valued parameters to each channel in the form of a bias, see [7] for more details. This
modification can be viewed as adding several learnable bias layers to the model. These extra
layers are located before each sign activation and before and after each PReLU. However, as
these biases are per channel, in practice they only increase the size and computational cost
of the network marginally.

PReLU vs ReLU. To quantify the benefit of the PReLU non-linearities we train an ad-
ditional model containing the learnable bias layers in combination with ReLU activations
instead of the PReLU activations.

Parameter Scaling. ReActNet uses a binary quantisation scheme where the binary param-
eters are scaled per channel, specifically with w ∈ {−αc,αc} where c indexes over the output
channels of a given layer. The scalars αc are calculated to be the mean of the absolute values
of the parameters in the cth output layer. Note, once a model is trained, that parameters wwwb

can then be converted to {−1,1}p by multiplying the relevant batch-norm parameters by αc.
We employ a similar scaling, but we use a learnable scale per channel, as this leads to an
easier comparison. However, we note in both cases, due to the presence of batch norm, the
inclusion of the scalars should have little to no effect.

Distillation. Similar to Section 5.1 we detail the performance without distillation.

Choice of Approximation for Sign Function’s Gradient. In equations (1) and (2) we
detail two choices to approximate the gradient of the sign function. In Section 5.1 we made
use of the more complex version (2), here we investigate the effect of instead using the
original Straight Through Estimator (equation (1)) as suggested in [5]. We label the model
with this modification “Classic STE”.

Binary First and Last Layers. It is standard to retain floating point parameters within the
first and last layer of an FBNN. We investigate the effect of making these layers binary as
well.

Binary Bottlenecks. A number of recent works [2, 7] recommend against binary 1x1 con-
volutional layers in bottlenecks. We investigate the effect on performance of ignoring this
advice, and quantising these layers as well.

No Pretraining. In order to determine how important the pretraining phase is to the accu-
racy we try skipping this phase. We instead run the quantisation phase directly on a random
initialisation.

Different Regularisation Functions. Finally, we include results for BNEW using the reg-
ularisation functions detailed in equation (8).

Citation
Citation
{Liu, Shen, Savvides, and Cheng} 2020

Citation
Citation
{Liu, Shen, Savvides, and Cheng} 2020

Citation
Citation
{Hubara, Courbariaux, Soudry, El-Yaniv, and Bengio} 2016

Citation
Citation
{Bethge, Yang, Bornstein, and Meinel} 2019

Citation
Citation
{Liu, Shen, Savvides, and Cheng} 2020



A. PAREN, R. POUDEL: TRAINING FULLY BINARY NEURAL NETWORKS THE EASY WAY5

3.1 Results.

The results of the ablation study are shown in Table 2. Out of all the modifications considered
here, binarising the first and last layer caused the largest accuracy degradation of over 10%.
Binarising the bottleneck layers resulted in the second largest drop of 4%, reaffirming the
suggestion of [2] that binary bottleneck layers should be avoided. Removing distillation
resulted in the third largest drop in accuracy at a more modest 3%. Skipping the per-training
phase and training the model from scratch resulted in a performance loss of roughly 2%.
Using ReLU activations but still including the bias layers resulted in a 1.3% drop. Not using
the learnable bias layers only resulted in a 0.2% drop in accuracy suggesting that in this
setting these floating point weights could be excluded with minor cost, resulting in even
faster inference. We found in this study that the classic STE performed better than the more
complex approximation of the sign function, equation (2), introduced by [6]. However, the
difference here is not statistically significant, and we would suggest trying both versions as
there does not seem to be a consensus in the literature on which works better [2, 6].

The results of this ablation study suggest that the performance of an FBNN architecture
is insensitive to the training method used. The differences in the changes in performance be-
tween the two methods were relatively consistent, with STE slightly outperforming BNEW
due to the small epoch budget used.

As a result of the ablation study we train a additional model that uses the Classic STE to
approximate the gradient of the sign function and does not include weight scaling parameters.
We present the results of this experiment in the bottom row of Table 2. However combining
these changes does not seem to boost performance, but does reinforce the idea that these
aspects of the ReActNet architecture are not always necessary.

Table 2: Ablation study test accuracies.

REAL VALUES 67.1σ 0.7

OPTIMISER STE BNEW

BASELINE 56.1σ 0.4 55.8σ 0.5

NO LEARNABLE BIAS LAYERS 55.6σ 0.5 55.6σ 0.6
NO PRELU 54.3σ 0.1 54.5σ 0.3
NO SCALE 56.2σ 0.3 56.0σ 0.5
NO DISTILLATION 53.6σ 0.9 52.7σ 0.5
CLASSIC STE 56.5σ 0.3 56.0σ 0.4
BINARY FIRST AND LAST 43.5σ 1.2 42.5σ 0.5
BINARY BOTTLENECKS 52.9σ 0.3 51.8σ 0.3
NO PRETRAIN 55.0σ 0.2 54.0σ 0.5
Rℓ1 - REGULARISER NA 54.5σ 0.5
Rℓ2 - REGULARISER NA 54.9σ 0.4
NO SCALE & CLASSIC STE 56.2σ 0.3 56.0σ 0.4

Citation
Citation
{Bethge, Yang, Bornstein, and Meinel} 2019

Citation
Citation
{Liu, Wu, Luo, Yang, Liu, and Cheng} 2018

Citation
Citation
{Bethge, Yang, Bornstein, and Meinel} 2019

Citation
Citation
{Liu, Wu, Luo, Yang, Liu, and Cheng} 2018



6A. PAREN, R. POUDEL: TRAINING FULLY BINARY NEURAL NETWORKS THE EASY WAY

References
[1] Yu Bai, Yu-Xiang Wang, and Edo Liberty. Proxquant: Quantized neural networks via

proximal operators. International Conference on Learning Representations, 2019.

[2] Joseph Bethge, Haojin Yang, Marvin Bornstein, and Christoph Meinel. Back to sim-
plicity: How to train accurate bnns from scratch? arXiv preprint arXiv:1906.08637,
2019.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. Conference on Computer Vision and Pattern Recognition, 2016.

[4] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, To-
bias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. 2019.

[5] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks. Neural Information Processing Systems, 2016.

[6] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng.
Bi-real net: Enhancing the performance of 1-bit cnns with improved representational
capability and advanced training algorithm. European Conference on Computer Vision,
2018.

[7] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-Ting Cheng. Reactnet: To-
wards precise binary neural network with generalized activation functions. European
Conference on Computer Vision, 2020.


