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Abstract

In this work we present a simple but effective method for training Binarized Neural
Networks (BNNs). Specifically, models where the majority of both weights and activa-
tions are constrained to the set {—1,1}. These models offer significant improvements in
memory efficiency, energy usage and inference speed over their floating point counter-
parts. Our approach to training BNN splits the task into two phases. In the first phase
a model with binary activations and floating point weights is trained. In the second, a
concave regulariser is added to encourage the weights to become binary. This work is
orthogonal to improvements of BNN architectures, and offers an alternative optimisation
scheme for these models. Our method doesn’t require an auxiliary set of weights during
training and can be easily applied to any existing architectures. Finally, we achieve a new
state of the art training a BNN on the ImageNet data set.

1 Introduction

During the last decade there has been a steady trend towards the use of increasingly larger
neural networks. Exceptionally large neural networks have led to some of the most exciting
breakthroughs in machine learning. For example, very large transformer architectures have
redefined what is possible with language modelling [4, 8, 26]. However, large models with
billions of parameters have inherent limitations due to their computational costs. These mod-
els require large, expensive, and power hungry hardware. For example, the largest version
of GPT-3 required a staggering 10?* floating-point operations during training [4]. Befitting
hardware is required at inference time to run large models at reasonable speeds. This depen-
dence on specialised hardware presents two major drawbacks for using large models. First,
it restricts use cases preventing their use in power, size, or compute limited settings such as
mobile devices and remote sensing applications. In some use cases it may be possible to
offload the heavy computation to the cloud. However, this depends on the bandwidth and
stability of the connection, and importantly the criticality of the application, and thus is not
always possible. Second, even in applications where dedicated hardware is not a limiting
factor, the energy usage of very large over-parameterised models can still be significant, and
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this conflicts with a push to a more sustainable future. These limitations have led to signifi-
cant work to reduce the memory and computational costs of neural networks while retaining
strong generalisation performance. Many different methods have been proposed to this end,
including distillation, efficient architectures, network pruning, and various compression and
quantisation techniques. At the moment these are all active areas of research and it remains
unclear which provides the best results [22]. In this work we focus on network quantisation.

Binarized Neural Networks (BNN) are an extreme form of network quantisation where
the majority of weights and activations are constrained to the set {—1, 1}. This allows almost
all of the floating point arithmetic operations to be replaced with faster bit-wise alternatives
that can be performed on far cheaper hardware. Due to the discrete nature of binary param-
eters, without modification existing continuous optimisation techniques such as stochastic
gradient descent and its variants are unsuitable for training these models.

To address this issue Courbariaux et al. [5] proposed a "trick" that is now known as
the Straight Through Estimator (STE) method. The STE method relies on using auxiliary
parameters to accumulate successive updates allowing several small gradients to produce a
sign change. Helwegen et al. [11] instead use the auxiliary parameters to keep track of
a moving average of the gradient and change sign if the value passes a threshold. More
recently Mirror Descent View for Neural Network Quantisation [1] introduced a closely
related method derived as a numerically stable implementation of Mirror Descent. This
method helps provide more of a theoretical justification for the STE method and solid results
when well tuned.

We take inspiration from the work of Bai et al. [2] who provide a more principled method
of training binary weight neural networks. We relax the constraint on the binary parameters
to its convex hull and use a simple concave regulariser to force the solution to become binary.
Hence, we present a continuation method with a clear objective that is being minimised at
each step. Thus, we name our approach Binary Network the Easy Way or BNEW .

2 Preliminaries

Model Parameters and Quantisation scheme. We use w to denote the vector containing
the d parameters within a quantised neural network. We use w” to represent the subset of
parameters that we want to take discrete values. For clarity, note that w” does not always en-
code the final quantised values themselves. Hence, during an intermediate stage of training,
some of the values of w” may refer to a real valued vector. Many quantisation schemes have
been proposed in the literature offering different benefits. We refer the interested reader to
[9] for a good review of this area. However, the selection of a scheme is not the focus of
this work and thus we choose to stick to a canonical binary quantisation scheme. We aim
to obtain a model with w” € {—1,1}”. As is common practice, we let some parameters
retain floating point values. We denote the vector containing these unconstrained parame-
ters with w” € R?~P. This vector typically includes the weights in the first and last layers
of the network, all biases, bottleneck layer and parameters of batch norm layers. In our
notation w is simply the concatenation of w” and w”. Finally, we define the feasible set
® £ {—1,1}? UR?"? which represents the constraints on w.

Binary Activations. In this paper we focus on BNN or binary neural networks with both
discrete weights and activations. In these models dot products can be implemented using a
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bitwise XNOR operation followed by a bit count operation. This is in contrast to conven-
tional floating point models where a dot product requires multiple floating point multiplica-
tions and accumulation operations. Hence BNN s offer a drastic speed up, in inference speed
and latency. This is especially true for architectures with less parallelism such as CPUs [25].
In order to ensure that the activations of a BNN are binary the sign function is applied to
the inputs of every convolutional or linear layer. The gradient of the sign function is zero
almost everywhere. In order to back-propagate gradients through the model it is necessary
to approximate the sign function’s derivative with something continuous. A common choice
for this approximation is the Straight Through Estimator, which approximates the derivative
of sign(x) in the backwards pass with:
dsign(x) 1, forl|x| <1, 1
dx 0, for|x|>1.
Alternatively, [19, 20] suggest the use of the following approximation, which we adopt in
this paper, however, empirically we find that its benefits are limited.

2x+2, for —1<x<0,
= 2—2x, for 0<x<1, )
0, for 1 <x|.

dsign(x)
dx

Training Resources. Typically a BNN is desired to efficiently perform some inference
task on some lightweight hardware, for example controlling the steering and navigation in a
self driving car. It is commonly assumed that the model performing this task does not need to
be trained in-place on the lightweight hardware. Instead, extra computational resources are
available and can be used. Revisiting our example, a high performance computing cluster
could be used by the company developing the navigation system. Once trained, the final
BNN is downloaded onto the many lightweight devices executing the task, the fleet of cars
in our example. Hence, it is normally assumed when training BNN extra resources can be
used and thus most works use floating point parameters during this phase. Additionally, as
inference or test performance is the focus the training, cost and time are not the number one
concern when considering BNNs. While this is the dominant paradigm in the literature, there
are of course many interesting exceptions.

Loss Function. As is standard for supervised learning, we assume the objective function
f can be expressed as an expectation over z € Z, where z is a random variable indexing the
samples of the training set Z. We define the loss function associated with the z’* sample as
{,, and hence:

f(w) £ Eeez[l(w)], 3)

Learning Task. The task of training a BNN can be expressed as finding an optimal vector
w, € Q that minimises f:
w, € argmin f(w). (B)
wed
This is a highly non-linear non-convex mixed integer program and thus is NP hard in general,
and does not permit an efficient solution. Using projected sub-gradient descent to find a local
optimum would require an unreasonably large learning rate to produce a sign change in w’.

Next, we will discuss how notable previous works have tackled optimising 5.
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3 Related Work

3.1 The Straight Thorough Estimator Method

What has now become known as The Straight Through Estimator (STE) method was first
introduced in [5] as a method to train neural networks with binary weights and real valued
activations. A year later [12] showed that this method could be used to train neural networks
with both binary weights and activations. The STE method relies on introducing a second set
of auxiliary parameters w” € R? one for each of the binary parameters. Binary parameters
are calculated before every forward pass using wﬁ’ = sign(Wﬁ’ ). The gradient is then evaluated
on the model with the binary parameters wf’ . However, this gradient is used to update the
auxiliary parameters in the backwards pass. At time step ¢ this optimisation scheme can be
succinctly described as follows:

Wl =TI (W) —n, VL, (w))), 4)
Wi =w, — NV, (w)), (5)

where 7, is the learning rate and IT_, j is projection onto the interval [—1, 1]. In practice the
Adam optimiser [14] update is typically used. The STE method has been used as the work
horse in training many interesting extensions since the pioneering work of [5] and [12].
These works focus on adding extra scalars and parameters [17, 25], different quantisation
schemes[16, 28, 30], and architectures designed for quantised weights [18] to name a few.
More recently, the STE method has been used to good effect by works such as [20] which
have by clever architectural design pushed the performance of BNNs, and offer state of the
art levels. We refer the interested reader to [9] for a more thorough review of the area. Of
special note are the works that removed the need for real valued weights during training
[7, 29]. These works present methods suited to training on low compute devices. However,
in this work we choose to focus on the more standard assumption that extra resources are
available at training time, and the goal is to develop a lightweight model for inference.

3.2 Mirror Descent

Recently Ajanthan et al. [1] introduced a new method of training BNNs using Mirror De-
scent. Mirror Descent is a well studied first-order optimisation method for constrained con-
vex problems [23]. However, before the work of Ajanthan et al. its application to training
BNN had not been explored. In particular, this work introduced "MD-tanh-S" a numerically
stable implementation of Mirror Descent that shares a lot of similarity with the STE method.
For convenience we will refer to this method as Binary Mirror Descent (BMD). As men-
tioned, BMD is operationally similar to the STE method also introducing an auxiliary set
of parameters w”. However, in BMD both sets of parameters w” and w’ take real values
throughout training. Similar to the STE method, before every forward pass w” is mapped to
w? by the following equation:

wy = tanh(B,Wwy), 6)

where f3; is a temperature parameter. The gradient is evaluated at wﬁ’ and then equations (4)
and (5) are used to update w”. It is worth noting as 8, — oo, this mapping becomes equivalent
to the sign function and in this case BMD is identical to the STE method. In practice, f; starts
at a low value fy ~ 1 and is increased throughout training according to the following scheme
B = Al,,. Mirror descent is a well studied algorithm, and is more principled than the STE
method, which lacks strong justification from theory.
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3.3 Binary Optimiser

Helwegen et al. [11] have also proposed a bespoke optimiser for the training of BNNs which
they call Binary Optimiser (BOP). BOP aims to redefine the latent weights as an inertia
rather than an accumulation of the gradients. Hence, they calculate an exponential moving
average of the gradients for each binary weight, denoted m”, using the following update:

mﬁ)ﬂ =(1- n:)mf’ -n/ Ve, (Wf)~ (7

After each update of equation (7), a binary parameter wf’ has its sign flipped if mf’ and wf’ have
the same sign and m? has greater magnitude than a threshold hyperparameter 7. BOP can
also be viewed as a modified version of the STE method where binarization in the forward
pass is completed via w” | = sign(W? + tsign(w?)) and the update (4) is modified to w’, | =
(1 —n,)W> —n, Ve, (wP). The authors of bop suggest that the floating point parameters w/
are updated using Adam with a different learning rate 1/. We find BOP performs well
in practice, however, it lacks theoretical guarantees. More recently, [27] have proposed a
modified version of BOP that keeps track of a vector containing a moving average of the
second moment of the gradients which they label v?. At each time step, the first moment of
each gradient mﬁ’ 1 1s then re-scaled by the L_ before comparing to the threshold 7.

v

3.4 ProxQuant

Bai et al. [2] introduced ProxQuant, a surprisingly simple and effective algorithm for training
neural networks with binary weights. ProxQuant is notably different from the other methods.
The ProxQuant algorithm does not require an additional auxiliary set of parameters, instead
it acts on a single set of real valued weights that are initialised to a pretrained floating point
network. Throughout the training procedure w” is slowly encouraged to become binary by
use of a regularisation function R(w). The regularisation functions suggested by [2] penalise
either the £, or £, norm of the distance between w” and its nearest quantised value. In the
case where a binary quantization scheme is used, these can be detailed as follows:

Rey(w) = [W? —sign(w)[2,  Re,(w)= W’ —sign(w”)] ®)
From either of these regularisation functions the following proximal operator is derived:
prox; z(w;) = argmin { AR(w) + |[w —w, |3} . 9)
w

With the proximal operator defined, the ProxQuant algorithm at time ¢ can be summerised
as:

Wl = Proxy, e (9 — VL, () ). (10)

Again, in practice the Adam optimiser update is used within the proximal operator. A, is
increased throughout training according to a linear scheme. Finally, to ensure all the weights
w? are binary for the final part of training w? is projected onto the set {=1,1}? and then
w' is fine-tuned to the these final values. ProxQuant only provided results for small models
trained on the CIFAR data sets [15]. Our work is inspired by ProxQuant. However, critically
we show, 1) how their approach can be extended to models with both binary weights and
activations; ii) the effectiveness when doing so; iii) that this approach scales to large binary
models and data sets, and finally; iv) some additional improvements to boost performance.
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4 Algorithm

4.1 Problem Formulation

We do not try to optimise (13) directly and instead relax the constraint on w® from w? €
{~1,1}? to w? € [~1,1]P. In order to ensure quantised solutions we introduce a concave
regularisation function Rgygw (w) resulting in the formulation:

w, € argminF = f(w) + ARpnew (W), (P)
weQ

where Q £ [~1,1]? URY"” and Rgyew (w) = —|w”||? + p. Where p ensures the non neg-
ativity of the objective, however, we will suppress this term for clarity. It is clear that as
A; — oo any solution to the above problem must include w” € {—=1,1}7, as all other solutions
would incur infinite cost. With (P) in this form we can make use of a Projected Stochastic
Gradient Descent (PSGD) like update, which we detail in Section 4.2.

4.2 Parameter Update

In order to find a solution to (P) at time step ¢ we solve the following proximal problem:
_ . i _ 2 ¢ \vJ/ T _ _ b2
Wit = argmin { 5 [[w —wi||* + £, (W) + VL, (we) (w—we) = A[w’[*}. D)
weQ 277t

As (11) is smooth and Q is a convex set we can simply solve for w; | to get the following
update for w’:

1
Wt =T (g O = e 060 ) i (1 20m) 0 - V2, ) ),
(12)

Where I, is the euclidean projection onto [—1, 1]7, and the second equality is approximately
equal for small 4,. The real value parameters w” are updated according to (5). Note, when
A =0, (12) is identical to PSGD. In practice the Adam update [14] is used over the vanilla
SGD update inside of (5) and (12). In order to find a good solution to (P) we use the
following training process.

4.3 Training Procedure

Our training procedure is split into three phases. In the first phase we train a neural network
with binary activations and real valued weights. In the second phase of training we slowly
encourage the weights to become binary. Finally, we project w” onto the set {—1,1}?, and
fine-tune the real valued parameters. At a high level, our training process is similar to that of
ProxQuant and enjoys the same asymptotic convergence rate, see supplementary materials.

Pre-Training Phase. Similar to the work of [19, 20] we first train a neural network with
binary activations and real valued weights. This is achieved by the addition of sign activa-
tions before each convolution layer. This results in the input to intermediate convolutional
layers being binary. Our pre-training phase is different from that of ProxQuant in the follow-
ing three ways. First, as we are concerned with training models with binary activations, the
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model trained during the pre-training phase has binary activations. Second, we use the Adam
optimiser rather than SGD during the pre-training phase. Third, we use PSGD or (12) with
A = 0, in other words we project w’ to the set [—1, 1] after every iteration. These last two
changes address an issue with ProxQuant where the accuracy drops a lot during the first few
iterations of the quantisation phase. This reduction is caused as a lot of the useful structure
in the network is destroyed by w” being suddenly clipped to [—1,1]” and a jump to a much
higher effective learning rate, as a result of switching from SGD to Adam.

Quantisation Phase. Once the first phase of training is complete we proceed with the
quantisation phase. In this phase we slowly move from a model with both real valued weights
and binary activations to a model with binary weights and activations. We start from the best
model from pretraining and increase the weight of the regularization function A, throughout
this phase, according to a linear rate 4, =7 - A,4.. In general, completing the quantisation
phase over a longer time frame with a lower rate A, produces better results.

Fine Tuning. Before the last few epochs of training we project w” onto the set of quantised
values {—1,1}”. We then set V/, (w?) = 0. This process is done in order to ensure all
weights are binary and to fine-tune the real value parameters w” to the final values of w’.

Figure 1: Different choices for regularisation function penalising non-binary weights.

4.4 Choice of Regularisation Function

Bai et al. [2] present two different choices for regularization functions, detailed in equation
(8). While these are natural choices, and produce reasonable results, both functions have
their largest gradients close to zero. Hence, as A; is increased, weights close to zero are
quickly pushed in either the positive or negative direction. Moreover, once E,[VZ,, (w?)] <
[, [A, VR(w?)] it becomes difficult for w” to change sign for the rest of training. Figure 1 de-
picts our choice of regularisation function Rgyew (W) = —||w’||*> + p and those introduced in
[2]. We suggest Rpyew is a more appropriate choice for the following reasons. First, Rpvew
has small gradient close to zero. This means parameters close to zero do not experience as
large an update towards —1 or 41 as parameters already close to these values. Hence, in
general the parameters close to their quantised values are more incentivized to take binary
values first, followed by those with smaller absolute values. The large gradient of Rpyew
close to —1 or +1 is designed to help prevent parameters oscillating around these values.
Finally, and most importantly, we find that our Rgygw produces better results in practice.
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S Experiments

Our experiments are split into two sections. In the first we investigate the performance of
BNEW using a small BNN on CIFAR-10 and CIFAR-100 [15]. In the second section we
show that BNEW scales to large BNN and data sets by training a ReActNet [20] on the
ImageNet data set [6].

5.1 Small Scale Experiments

Setting. Much of the previous work on BNNs only present results for large over-parameterised
models [1, 19, 20]. While these models may seem appealing due to the smaller accuracy
degradation from their real valued counterparts, smaller BNN architectures are preferable to
run on embedded devices. In this section we provide results produced from training a small
ResNet20 [10], on the CIFAR-10 and CIFAR-100 data sets. These data sets [15] contain
60,000 32x32 pixel RGB images split over 10 and 100 classes, respectively. We modify a
ResNet20 to include a similar block structure to that of ReActNet, detailed in [20]. This re-
sults in a small effective BNN with d = 0.28M. We let the weights in the first and last layers
of the network, all biases, parameters of batch norm layers, and bottleneck layers retain float-
ing point values. This results in a model which is 95% binary and requires 12.5 times less
memory to store compared to its floating point counterpart. The exact speed of this model
would depend on the exact hardware used at inference time. Rastegari et al. [25] suggest
up to a 50 times speed up is possible for a BNN on the CPU. For each data set we provide
results with and without distillation. When using distillation the CE loss is replaced with
loss measuring the Kullback—Leibler (KL) divergence loss between the student and teacher.

Method: We compare BNEW against the STE method, BMD and BOP as described in
Sections 3.1, 3.3, 3.2, respectively. We select these methods as they are optimisation algo-
rithms that can be used to train any BNN. For a fair comparison we exclude any methods
that require modification of the network architecture, or that produce non-binary quantiza-
tion schemes such as ALQ [24]. We use the following hyperparameters and strategies for all
methods. We use a fixed batch size of 128 and epoch budget of and 1000. We use Adam
with a linearly decaying learning rate schedule with 19 € {0.01,0,001}. For BOP we con-
sidered ng € {1072,1073}, v € {1077,1078,107°},m9 = 10~*. We use a linear schedule
for n44e™ and ny. We find ng‘d“m = 1072 and t = 10~% are best in practice. For BMD
we cross-validate A,4, € {1.003,1.01,1.03,1.1,1.3}. For BNEW we use A4, = 0.01 for
all experiments. To ensure the w” has binary values for BMD and BNEW , the real valued
weights are fine tuned for the final 20 epochs, as described in Section 4.3. We include re-
sults for a baseline ResNet20 with real valued weights and activations for use as a reference,
trained according to the scheme described in [10]. These models are additionally used as the
teachers when performing distillation. We use the following hyperparameters and strategies
for all methods All results are computed over five runs with different random seeds. We use
the same pre-trained models with binary activations and real valued parameters as the start-
ing point for all methods as described in Section 4.3. While the authors of BMD and BOP
do not suggest this for their methods, we find it produces superior results. All images are
centred and normalised per channel and are subject to random flips and crops during train-
ing. In the supplementary materials we include an ablation study, results for BNEW using
the regularisation functions detailed in (8), and results for all methods using a shorter epoch
budget.
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Table 1: Accuracies on CIFAR-10 and CIFAR-100 data sets.

DATA SET ‘ CIFAR-10 CIFAR-100
DISTILLATION \ No YES \ No YES
REAL VALUED | 91.460.3 - | 67.160.7 -

STE 84.360.3 85.100.4 | 55.000.5 56.8060.3
BMD 84.060.4 84.900.3 | 54.800.5 56.800.5
BOP 84.560.2 85.200.4 | 55.300.4 57.700.4
BNEW 84.560.3 85.1060.4 | 55.000.3 57.5060.3

Results: The results of the CIFAR experiments are shown in Table 1. In general, the stan-
dard deviation values are fairly high at just under half a percentage. However, this is typical
when training small binary models which are prone to bad local minima. The similarity in
performance between optimisers is typically less than the standard deviation, which makes
it hard to say anything conclusive about which method is best. All techniques result in an
accuracy degradation of roughly 6% on the CIFAR-10 and between 9.5-10.5% on CIFAR-
100. The largest difference in performance between optimisers is on the CIFAR-100 data set
in combination with distillation, where BOP and BNEW perform significantly better. For
all methods a shorter quantisation phase and lack of distillation produces a decrease in the
quality of results. Hence, when the computation budget allows, we recommend training for
longer and using distillation to produce a stronger binary model, regardless of the optimiser
used. Figure 2 shows training curves generated by BNEW during the quantisation phase.
The full results of the ablation study are presented in the supplementary material. However,
here we note that the results are mostly in line with the findings of [3], and while many of the
developments of ReActNet are useful we find the use of Equation (2) over (1) and addition
of channel-wise scalars have no positive effect. The second result is not surprising given the
inclusion of batch-norm layers [13].

Training Loss Training Accuracy Validation Accuracy Mean Distance to {—1,1}
65
1.6 1 0.4
404
60
1.4 20 0.2 1
55
1.21 I I ! | } } 01 I I I 0.04 I I 1
0 500 1000 0 500 1000 0 500 1000 0 500 1000
Epochs Epochs Epochs Epochs

Figure 2: Training curves produced by BNEW on the CIFAR-100 data set. Note, the valida-
tion accuracy is only evaluated for the fine training phase.

5.2 ImageNet Experiments

Setting and Method. The ImageNet data set [6] contains 1.2M large RGB images of
various sizes split over 1000 classes. On this data set we train a ReActNet-A [20], and
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Table 2: Accuracies on ImageNet data set.

ARCHITECTURE DISTILLATION BACKBONE OPTIMISER \ ACCURACY
XNORNET[25] No RESNET18 STE 51.2
BIREALNET[19] No RESNETI18 STE 56.4
BIREALNET No RESNET18 BOP[11] 56.6
BIREALNET No RESNET18 2"dORDER BOP [27] 57.2
BIREALNET YES RESNET18 BMDJ[1] 62.8
REAL-TO-BIN[21] YES RESNETI18 STE 65.4
REACTNET[20] YES RESNETI18 STE 65.5
REACTNET[20] YES MOBLIENET STE 69.4
REACTNET YES MOBLIENET BNEW 69.7

use their data augmentation scheme. The ground truth labels for ImageNet are not freely
available and hence we report validation scores instead. We follow the training method-
ology of [20], however, in phase two of training we use BNEW rather then the STE to
convert the parameters within w” from real values to binary values. We use A4 = 0.01
1Mo = 1073, epochs = 500, epoch freeze = 400. We restart the linear decay of the 1) for the fine
tuning phase. We do not change any other hyperparameters except the batch size which we
reduce to 220 due to hardware constraints. We compare against other BNN models training
on ImageNet with comparable compute budgets [20]

Results. BNEW achieves an accuracy of 69.7% which is 0.3% higher than the state of the
art performance of [20]. This is a promising result, given the lack of tuning for BNEW,
and the fact that their network was designed to maximise the result obtained training with
the STE method. This shows our simple approach for training BNN easily scales to large
models and produces strong results in this setting.

6 Conclusion

In this work we have introduced BNEW, an effective and simple method for training neural
networks with both binary weights and activations. To our knowledge, we are the first to
show that a continuation method is effective in this setting. BNEW can easily be applied to
a wide range of models given its simplicity. Additionally, BNEW has the following advan-
tageous qualities i) strong empirical results; ii) the gradient is evaluated at the current iterate
and hence does not require auxiliary parameters during training; and iii) a strong theoreti-
cal justification. BNEW also has two main weaknesses. First, the full training procedure
must be completed up to the fine tuning phase before one has any indication of the final
performance. Second, BNEW’s effectiveness has a dependence on the hyperparamater A,
which needs to be selected to ensure w” becomes mostly binary before the fine tuning phase.
However, this issue can be circumvented by continuing training until this is so. In this work
we have only shown results for binary quantisation, however, it would be trivial to extend
BNEW to other quantisation schemes. This would be achieved by modifying the regularisa-
tion function Rpyew, however, we leave this to future work. We hope this paper provides an
alternative direction for BNN optimisation research alongside the STE and its derivatives.
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